Rachmuth Guy, Poon Chi-Sang
HFSP J. 2008 Jun;2(3):156-66. doi: 10.2976/1.2905393. Epub 2008 Apr 18.
Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.
神经形态模拟金属氧化物硅(MOS)晶体管电路有望实现紧凑、低功耗且高速的离子-神经元动力学仿真,其速度比数字仿真快几个数量级。然而,它们固有的输入电压动态范围与功耗以及硅芯片面积之间的权衡,使得它们对由于制造误差、器件噪声和其他非理想因素导致的晶体管失配高度敏感。这种限制使得除了具有有限离子通道动力学的简单尖峰之外,无法实现强大的模拟超大规模集成(aVLSI)电路来执行新兴的离子-神经元动力学计算。在此,我们展示了通用的神经形态模拟构建模块电路,其在低功耗MOS晶体管弱反转区域内运行,可提供接近最大的电压动态范围,这对于aVLSI实现或可植入仿生设备应用来说是理想的。所制造的微芯片能够可靠地实现动态离子-神经元计算,例如突触前尖峰或突触前和突触后活动的巧合检测。作为一项关键的性能基准,芯片上的高速且高度交互式的离子-神经元模拟能力使我们能够迅速发现混沌起搏器爆发的最小模型,这是一种具有根本生物学意义的新兴离子-神经元行为,迄今为止通过传统数字或模拟仿真一直无法进行实验测试或计算探索。这些紧凑且节能的新兴离子-神经元动力学晶体管模拟为下一代神经形态、神经假体和脑机接口应用开辟了新途径。