Department of Cognitive Sciences, University of California Irvine, CA, USA.
Front Neuroinform. 2011 Sep 14;5:19. doi: 10.3389/fninf.2011.00019. eCollection 2011.
We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. It uses a standard network construction interface. The simulator allows for execution on either GPUs or CPUs. The simulator, which is written in C/C++, allows for both fine grain and coarse grain specificity of a host of parameters. We demonstrate the ease of use and computational efficiency of this model by implementing a large-scale model of cortical areas V1, V4, and area MT. The complete model, which has 138,240 neurons and approximately 30 million synapses, runs in real-time on an off-the-shelf GPU. The simulator source code, as well as the source code for the cortical model examples is publicly available.
我们开发了一个 Spike 神经网络模拟器,它既易于使用又具有高效的计算能力,适用于生成大规模的计算神经科学模型。该模拟器实现了基于电流或电导的 Izhikevich 神经元网络,具有尖峰时间依赖性可塑性和短期可塑性。它使用标准的网络构建接口。模拟器允许在 GPU 或 CPU 上执行。这个用 C/C++编写的模拟器允许对许多参数进行细粒度和粗粒度的特异性调整。我们通过实现一个包含 V1、V4 和 MT 等皮层区域的大规模模型来展示该模型的易用性和计算效率。这个完整的模型包含 138240 个神经元和约 3000 万个突触,可以在现成的 GPU 上实时运行。模拟器的源代码以及皮层模型示例的源代码都是公开可用的。