Suppr超能文献

用于大规模皮质处理建模的高效模拟环境。

An efficient simulation environment for modeling large-scale cortical processing.

机构信息

Department of Cognitive Sciences, University of California Irvine, CA, USA.

出版信息

Front Neuroinform. 2011 Sep 14;5:19. doi: 10.3389/fninf.2011.00019. eCollection 2011.

Abstract

We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. It uses a standard network construction interface. The simulator allows for execution on either GPUs or CPUs. The simulator, which is written in C/C++, allows for both fine grain and coarse grain specificity of a host of parameters. We demonstrate the ease of use and computational efficiency of this model by implementing a large-scale model of cortical areas V1, V4, and area MT. The complete model, which has 138,240 neurons and approximately 30 million synapses, runs in real-time on an off-the-shelf GPU. The simulator source code, as well as the source code for the cortical model examples is publicly available.

摘要

我们开发了一个 Spike 神经网络模拟器,它既易于使用又具有高效的计算能力,适用于生成大规模的计算神经科学模型。该模拟器实现了基于电流或电导的 Izhikevich 神经元网络,具有尖峰时间依赖性可塑性和短期可塑性。它使用标准的网络构建接口。模拟器允许在 GPU 或 CPU 上执行。这个用 C/C++编写的模拟器允许对许多参数进行细粒度和粗粒度的特异性调整。我们通过实现一个包含 V1、V4 和 MT 等皮层区域的大规模模型来展示该模型的易用性和计算效率。这个完整的模型包含 138240 个神经元和约 3000 万个突触,可以在现成的 GPU 上实时运行。模拟器的源代码以及皮层模型示例的源代码都是公开可用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1f/3172707/87cb6d0e3527/fninf-05-00019-g001.jpg

相似文献

1
An efficient simulation environment for modeling large-scale cortical processing.
Front Neuroinform. 2011 Sep 14;5:19. doi: 10.3389/fninf.2011.00019. eCollection 2011.
2
A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
Neural Netw. 2009 Jul-Aug;22(5-6):791-800. doi: 10.1016/j.neunet.2009.06.028. Epub 2009 Jul 2.
3
A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling.
Front Neuroinform. 2013 Oct 2;7:19. doi: 10.3389/fninf.2013.00019. eCollection 2013.
4
Efficient spiking neural network model of pattern motion selectivity in visual cortex.
Neuroinformatics. 2014 Jul;12(3):435-54. doi: 10.1007/s12021-014-9220-y.
5
Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
Neural Netw. 2013 Dec;48:109-24. doi: 10.1016/j.neunet.2013.07.012. Epub 2013 Aug 14.
6
Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs.
Front Comput Neurosci. 2021 Feb 17;15:627620. doi: 10.3389/fncom.2021.627620. eCollection 2021.
7
Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.
Front Neuroinform. 2023 Feb 10;17:941696. doi: 10.3389/fninf.2023.941696. eCollection 2023.
8
NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
Front Neurosci. 2016 Jan 14;9:516. doi: 10.3389/fnins.2015.00516. eCollection 2015.
9
Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs.
Front Neuroinform. 2022 Oct 31;16:883700. doi: 10.3389/fninf.2022.883700. eCollection 2022.
10
SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron.
Front Neurosci. 2019 Jul 12;13:625. doi: 10.3389/fnins.2019.00625. eCollection 2019.

引用本文的文献

1
Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs.
Front Neuroinform. 2022 Oct 31;16:883700. doi: 10.3389/fninf.2022.883700. eCollection 2022.
2
A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations.
Front Neuroinform. 2022 May 11;16:837549. doi: 10.3389/fninf.2022.837549. eCollection 2022.
3
Pattern Recognition of Spiking Neural Networks Based on Visual Mechanism and Supervised Synaptic Learning.
Neural Plast. 2020 Oct 27;2020:8851351. doi: 10.1155/2020/8851351. eCollection 2020.
4
Brian 2, an intuitive and efficient neural simulator.
Elife. 2019 Aug 20;8:e47314. doi: 10.7554/eLife.47314.
6
NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
Front Neurosci. 2016 Jan 14;9:516. doi: 10.3389/fnins.2015.00516. eCollection 2015.
7
Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain.
PLoS One. 2016 Jan 11;11(1):e0146581. doi: 10.1371/journal.pone.0146581. eCollection 2016.
8
Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex.
Front Neurorobot. 2015 Jul 22;9:6. doi: 10.3389/fnbot.2015.00006. eCollection 2015.
9
Synthetic neuronal datasets for benchmarking directed functional connectivity metrics.
PeerJ. 2015 May 5;3:e923. doi: 10.7717/peerj.923. eCollection 2015.
10
Improper activation of D1 and D2 receptors leads to excess noise in prefrontal cortex.
Front Comput Neurosci. 2015 Mar 11;9:31. doi: 10.3389/fncom.2015.00031. eCollection 2015.

本文引用的文献

1
Fitting neuron models to spike trains.
Front Neurosci. 2011 Feb 23;5:9. doi: 10.3389/fnins.2011.00009. eCollection 2011.
2
A circuit-level model of hippocampal place field dynamics modulated by entorhinal grid and suppression-generating cells.
Front Neural Circuits. 2010 Nov 18;4:122. doi: 10.3389/fncir.2010.00122. eCollection 2010.
3
A subthreshold aVLSI implementation of the Izhikevich simple neuron model.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4164-7. doi: 10.1109/IEMBS.2010.5627392.
4
Code generation: a strategy for neural network simulators.
Neuroinformatics. 2010 Oct;8(3):183-96. doi: 10.1007/s12021-010-9082-x.
5
The brian simulator.
Front Neurosci. 2009 Sep 15;3(2):192-7. doi: 10.3389/neuro.01.026.2009. eCollection 2009 Sep.
6
Neuroscience. How good are neuron models?
Science. 2009 Oct 16;326(5951):379-80. doi: 10.1126/science.1181936.
7
Changes of mind in decision-making.
Nature. 2009 Sep 10;461(7261):263-6. doi: 10.1038/nature08275. Epub 2009 Aug 19.
8
Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold.
Front Comput Neurosci. 2009 Jul 30;3:9. doi: 10.3389/neuro.10.009.2009. eCollection 2009.
9
A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
Neural Netw. 2009 Jul-Aug;22(5-6):791-800. doi: 10.1016/j.neunet.2009.06.028. Epub 2009 Jul 2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验