Sourikopoulos Ilias, Hedayat Sara, Loyez Christophe, Danneville François, Hoel Virginie, Mercier Eric, Cappy Alain
Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICA Lille, France.
Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICALille, France; Centre National de la Recherche Scientifique, Université Lille, ISEN, Université Valenciennes, UMR 8520 - IEMNLille, France.
Front Neurosci. 2017 Mar 15;11:123. doi: 10.3389/fnins.2017.00123. eCollection 2017.
As Moore's law reaches its end, traditional computing technology based on the Von Neumann architecture is facing fundamental limits. Among them is poor energy efficiency. This situation motivates the investigation of different processing information paradigms, such as the use of spiking neural networks (SNNs), which also introduce cognitive characteristics. As applications at very high scale are addressed, the energy dissipation needs to be minimized. This effort starts from the neuron cell. In this context, this paper presents the design of an original artificial neuron, in standard 65 nm CMOS technology with optimized energy efficiency. The neuron circuit response is designed as an approximation of the Morris-Lecar theoretical model. In order to implement the non-linear gating variables, which control the ionic channel currents, transistors operating in deep subthreshold are employed. Two different circuit variants describing the neuron model equations have been developed. The first one features spike characteristics, which correlate well with a biological neuron model. The second one is a simplification of the first, designed to exhibit higher spiking frequencies, targeting large scale bio-inspired information processing applications. The most important feature of the fabricated circuits is the energy efficiency of a few femtojoules per spike, which improves prior state-of-the-art by two to three orders of magnitude. This performance is achieved by minimizing two key parameters: the supply voltage and the related membrane capacitance. Meanwhile, the obtained standby power at a resting output does not exceed tens of picowatts. The two variants were sized to 200 and 35 μm with the latter reaching a spiking output frequency of 26 kHz. This performance level could address various contexts, such as highly integrated neuro-processors for robotics, neuroscience or medical applications.
随着摩尔定律走向尽头,基于冯·诺依曼架构的传统计算技术正面临着根本性的限制。其中一个限制是能源效率低下。这种情况促使人们对不同的信息处理范式进行研究,例如使用脉冲神经网络(SNN),这种网络还引入了认知特性。随着超大规模应用的出现,需要将能量耗散降至最低。这项工作从神经元细胞开始。在此背景下,本文介绍了一种采用标准65纳米互补金属氧化物半导体(CMOS)技术设计的、具有优化能源效率的新型人工神经元。该神经元电路响应被设计为对莫里斯 - 勒卡尔理论模型的近似。为了实现控制离子通道电流的非线性门控变量,采用了工作在深亚阈值的晶体管。已经开发出两种描述神经元模型方程的不同电路变体。第一种具有脉冲特性,与生物神经元模型相关性良好。第二种是第一种的简化版本,旨在展现更高的脉冲频率,目标是大规模受生物启发的信息处理应用。所制造电路的最重要特性是每个脉冲的能量效率达到几飞焦耳,比先前的最先进水平提高了两到三个数量级。通过最小化两个关键参数:电源电压和相关的膜电容,实现了这一性能。同时,在静止输出时获得的待机功率不超过几十皮瓦。这两种变体的尺寸分别为200和35微米,后者达到了26千赫兹的脉冲输出频率。这种性能水平可适用于各种场景,例如用于机器人技术、神经科学或医学应用的高度集成神经处理器。