Suppr超能文献

高维神经数据中眼动伪迹的全自动消除。

Fully automated reduction of ocular artifacts in high-dimensional neural data.

机构信息

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

IEEE Trans Biomed Eng. 2011 Mar;58(3):598-606. doi: 10.1109/TBME.2010.2093932. Epub 2010 Nov 22.

Abstract

The reduction of artifacts in neural data is a key element in improving analysis of brain recordings and the development of effective brain-computer interfaces. This complex problem becomes even more difficult as the number of channels in the neural recording is increased. Here, new techniques based on wavelet thresholding and independent component analysis (ICA) are developed for use in high-dimensional neural data. The wavelet technique uses a discrete wavelet transform with a Haar basis function to localize artifacts in both time and frequency before removing them with thresholding. Wavelet decomposition level is automatically selected based on the smoothness of artifactual wavelet approximation coefficients. The ICA method separates the signal into independent components, detects artifactual components by measuring the offset between the mean and median of each component, and then removing the correct number of components based on the aforementioned offset and the power of the reconstructed signal. A quantitative method for evaluating these techniques is also presented. Through this evaluation, the novel adaptation of wavelet thresholding is shown to produce superior reduction of ocular artifacts when compared to regression, principal component analysis, and ICA.

摘要

减少神经数据中的伪影是提高大脑记录分析和开发有效脑机接口的关键因素。随着神经记录中通道数量的增加,这个复杂的问题变得更加困难。在这里,开发了基于小波阈值和独立成分分析(ICA)的新技术,用于处理高维神经数据。该小波技术使用具有 Haar 基函数的离散小波变换,在使用阈值去除伪影之前,在时间和频率上定位伪影。小波分解级别根据伪影小波逼近系数的平滑度自动选择。ICA 方法将信号分为独立成分,通过测量每个成分的均值和中位数之间的偏差来检测伪成分,然后根据上述偏移量和重建信号的功率,去除正确数量的成分。还提出了一种评估这些技术的定量方法。通过这种评估,与回归、主成分分析和 ICA 相比,小波阈值的新自适应方法显示出对眼动伪影有更好的减少效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验