Suppr超能文献

对三种乳酸菌及其同源 ldh 缺失突变体的表征表明,在其生理 pH 值下,YATP(每摩尔 ATP 产生的细胞质量)得到了优化。

Characterization of three lactic acid bacteria and their isogenic ldh deletion mutants shows optimization for YATP (cell mass produced per mole of ATP) at their physiological pHs.

机构信息

University of Rostock, Institute of Medical Microbiology, Virology, and Hygiene, Schillingallee 70, 18057 Rostock, Germany.

出版信息

Appl Environ Microbiol. 2011 Jan;77(2):612-7. doi: 10.1128/AEM.01838-10. Epub 2010 Nov 19.

Abstract

Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion of the ldh genes hardly affected the growth rate in chemically defined medium under microaerophilic conditions. However, the growth rate was affected in rich medium. Furthermore, deletion of ldh affected the ability for utilization of various substrates as a carbon source. A switch to mixed acid fermentation was observed during glucose-limited continuous growth and was dependent on the growth rate for S. pyogenes and on the pH for E. faecalis. In S. pyogenes and L. lactis, a change in pH resulted in a clear change in Y(ATP) (cell mass produced per mole of ATP). The pH that showed the highest Y(ATP) corresponded to the pH of the natural habitat of the organisms.

摘要

一些乳酸菌利用同型乳酸发酵来产生 ATP。在这里,我们研究了乳酸脱氢酶(lactate dehydrogenase enzyme)在三种同型乳酸发酵菌——乳球菌(Lactococcus lactis)、粪肠球菌(Enterococcus faecalis)和酿脓链球菌(Streptococcus pyogenes)的一般生理学中的作用。值得注意的是,ldh 基因的缺失几乎不会影响微需氧条件下化学定义培养基中的生长速率。然而,在丰富的培养基中,生长速率会受到影响。此外,ldh 的缺失会影响利用各种底物作为碳源的能力。在葡萄糖限制的连续生长过程中,观察到混合酸发酵的转变,这取决于酿脓链球菌的生长速率和粪肠球菌的 pH 值。在酿脓链球菌和乳球菌中,pH 值的变化导致 ATP 产生的细胞质量(Y(ATP))发生明显变化。显示最高 Y(ATP)的 pH 值对应于生物体自然栖息地的 pH 值。

相似文献

2
Engineering Lactococcus lactis for D-Lactic Acid Production from Starch.
Curr Microbiol. 2019 Oct;76(10):1186-1192. doi: 10.1007/s00284-019-01742-4. Epub 2019 Jul 13.
4
Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium.
J Biotechnol. 2017 Aug 20;256:21-26. doi: 10.1016/j.jbiotec.2017.07.009. Epub 2017 Jul 8.
5
Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
Appl Environ Microbiol. 2018 Aug 31;84(18). doi: 10.1128/AEM.01005-18. Print 2018 Sep 15.
7
Suppression of lactate production by using sucrose as a carbon source in lactic acid bacteria.
J Biosci Bioeng. 2020 Jan;129(1):47-51. doi: 10.1016/j.jbiosc.2019.06.017. Epub 2019 Jul 29.
8
Construction and characterization of three lactate dehydrogenase-negative Enterococcus faecalis V583 mutants.
Appl Environ Microbiol. 2009 Jul;75(14):4901-3. doi: 10.1128/AEM.00344-09. Epub 2009 May 22.
9
Dynamics of pyruvate metabolism in Lactococcus lactis.
Biotechnol Bioeng. 2001 Aug 20;74(4):271-9. doi: 10.1002/bit.1117.
10
Physiology of pyruvate metabolism in Lactococcus lactis.
Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):253-67. doi: 10.1007/BF00395936.

引用本文的文献

1
Global diversity of enterococci and description of 18 previously unknown species.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2310852121. doi: 10.1073/pnas.2310852121. Epub 2024 Feb 28.
2
The Non-phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase GapN Is a Potential New Drug Target in .
Front Microbiol. 2022 Feb 15;13:802427. doi: 10.3389/fmicb.2022.802427. eCollection 2022.
3
PEGylation increases antitumoral activity of arginine deiminase of Streptococcus pyogenes.
Appl Microbiol Biotechnol. 2022 Jan;106(1):261-271. doi: 10.1007/s00253-021-11728-7. Epub 2021 Dec 15.
4
Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water.
Ecotoxicology. 2019 Jul;28(5):528-538. doi: 10.1007/s10646-019-02050-0. Epub 2019 May 22.
5
Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics.
Microb Biotechnol. 2019 Mar;12(2):265-274. doi: 10.1111/1751-7915.13305. Epub 2018 Oct 19.
6
The Antibacterial Mechanism of Terpinen-4-ol Against Streptococcus agalactiae.
Curr Microbiol. 2018 Sep;75(9):1214-1220. doi: 10.1007/s00284-018-1512-2.
7
Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome.
PLoS One. 2017 Nov 3;12(11):e0187542. doi: 10.1371/journal.pone.0187542. eCollection 2017.
8
Deletion of the L-Lactate Dehydrogenase Gene in Leads to a Loss of SpeB Activity and a Hypovirulent Phenotype.
Front Microbiol. 2017 Sep 21;8:1841. doi: 10.3389/fmicb.2017.01841. eCollection 2017.
9
Integrating highly quantitative proteomics and genome-scale metabolic modeling to study pH adaptation in the human pathogen .
NPJ Syst Biol Appl. 2016 Sep 8;2:16017. doi: 10.1038/npjsba.2016.17. eCollection 2016.

本文引用的文献

1
Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies.
J Bacteriol. 2010 Nov;192(21):5806-12. doi: 10.1128/JB.00533-10. Epub 2010 Jul 16.
2
Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
J Bacteriol. 2009 Sep;191(17):5510-7. doi: 10.1128/JB.00562-09. Epub 2009 Jun 19.
3
Construction and characterization of three lactate dehydrogenase-negative Enterococcus faecalis V583 mutants.
Appl Environ Microbiol. 2009 Jul;75(14):4901-3. doi: 10.1128/AEM.00344-09. Epub 2009 May 22.
4
The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach.
Comput Biol Chem. 2009 Feb;33(1):71-83. doi: 10.1016/j.compbiolchem.2008.08.001. Epub 2008 Aug 14.
5
Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes.
J Bacteriol. 2008 Dec;190(23):7773-85. doi: 10.1128/JB.00672-08. Epub 2008 Sep 26.
7
Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
Biotechnol Appl Biochem. 2008 May;50(Pt 1):25-33. doi: 10.1042/BA20070132.
8
The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose.
J Bacteriol. 2007 Sep;189(18):6727-30. doi: 10.1128/JB.00902-07. Epub 2007 Jul 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验