Biosciences Center, Colorado School of Mines, Golden, Colorado 80401, USA.
J Biol Chem. 2011 Feb 18;286(7):5614-23. doi: 10.1074/jbc.M110.186031. Epub 2010 Nov 22.
Most bacteria use free enzymes to degrade plant cell walls in nature. However, some bacteria have adopted a different strategy wherein enzymes can either be free or tethered on a protein scaffold forming a complex called a cellulosome. The study of the structure and mechanism of these large macromolecular complexes is an active and ongoing research topic, with the goal of finding ways to improve biomass conversion using cellulosomes. Several mechanisms involved in cellulosome formation remain unknown, including how cellulosomal enzymes assemble on the scaffoldin and what governs the population of cellulosomes created during self-assembly. Here, we present a coarse-grained model to study the self-assembly of cellulosomes. The model captures most of the physical characteristics of three cellulosomal enzymes (Cel5B, CelS, and CbhA) and the scaffoldin (CipA) from Clostridium thermocellum. The protein structures are represented by beads connected by restraints to mimic the flexibility and shapes of these proteins. From a large simulation set, the assembly of cellulosomal enzyme complexes is shown to be dominated by their shape and modularity. The multimodular enzyme, CbhA, binds statistically more frequently to the scaffoldin than CelS or Cel5B. The enhanced binding is attributed to the flexible nature and multimodularity of this enzyme, providing a longer residence time around the scaffoldin. The characterization of the factors influencing the cellulosome assembly process may enable new strategies to create designers cellulosomes.
大多数细菌在自然界中利用游离酶来降解植物细胞壁。然而,有些细菌采取了一种不同的策略,即酶可以是游离的,也可以与蛋白质支架结合形成一个称为纤维小体的复合物。这些大型大分子复合物的结构和机制的研究是一个活跃的、正在进行的研究课题,其目的是找到利用纤维小体提高生物质转化的方法。纤维小体形成的几个机制仍不清楚,包括纤维小体酶如何在支架蛋白上组装,以及在自组装过程中是什么控制着纤维小体的形成。在这里,我们提出了一个粗粒化模型来研究纤维小体的自组装。该模型捕捉了来自嗜热梭菌(Clostridium thermocellum)的三种纤维小体酶(Cel5B、CelS 和 CbhA)和支架蛋白(CipA)的大部分物理特性。蛋白质结构由连接在一起的珠子表示,这些珠子通过约束来模拟这些蛋白质的灵活性和形状。从大量的模拟数据集中,显示出纤维小体酶复合物的组装主要由它们的形状和模块化决定。多模块酶 CbhA 与支架蛋白的结合统计上比 CelS 或 Cel5B 更频繁。这种增强的结合归因于这种酶的灵活性和多模块化,使其在支架蛋白周围有更长的停留时间。对影响纤维小体组装过程的因素进行表征,可能会为创建设计纤维小体提供新的策略。