Suppr超能文献

小角 X 射线散射分析揭示了热纤维梭菌纤维小体 N 端复合物的高动态结构

Small angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structure.

机构信息

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.

Centro Interdisciplinar de Investigacao em Sanidade Animal, Faculdade de Medincina Veterinaria, Universidade Tecnica de Lisboa, 1300-477 Lisbon, Portugal.

出版信息

J Biol Chem. 2013 Mar 15;288(11):7978-7985. doi: 10.1074/jbc.M112.408757. Epub 2013 Jan 22.

Abstract

Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy. Because the large size and flexibility of the cellulosome preclude structural determination by traditional means, the structural basis of this synergy remains unclear. Small angle x-ray scattering has been successfully applied to the study of flexible proteins. Here, we used small angle x-ray scattering to determine the solution structure and to analyze the conformational flexibility of two overlapping N-terminal cellulosomal scaffoldin fragments comprising two type I cohesin modules and the cellulose-specific carbohydrate-binding module from CipA in complex with Cel8A cellulases. The pair distribution functions, ab initio envelopes, and rigid body models generated for these two complexes reveal extended structures. These two N-terminal cellulosomal fragments are highly dynamic and display no preference for extended or compact conformations. Overall, our work reveals structural and dynamic features of the N terminus of the CipA scaffoldin that may aid in cellulosome substrate recognition and binding.

摘要

热纤梭菌产生典型的纤维小体,这是一种大型多酶复合物,能够有效地将植物细胞壁多糖水解成可发酵的糖。这种能力使其在生物燃料生产中的潜在应用引起了极大的关注。核心非催化支架亚基 CipA 带有九个 I 型结构域的黏合模块,与分泌水解酶的 I 型 dockerin 模块相互作用,促进催化协同作用。由于纤维小体的体积大和灵活性,传统方法无法确定其结构,因此这种协同作用的结构基础仍不清楚。小角度 X 射线散射已成功应用于柔性蛋白的研究。在这里,我们使用小角度 X 射线散射来确定溶液结构,并分析包含两个 I 型黏合模块和 CipA 纤维素特异性碳水化合物结合模块的两个重叠纤维素小体支架片段与 Cel8A 纤维素酶复合物的构象灵活性。为这两个复合物生成的配对分布函数、从头算包络和刚体模型揭示了扩展结构。这两个纤维素小体的 N 端片段具有高度的动态性,没有表现出对扩展或紧凑构象的偏好。总的来说,我们的工作揭示了 CipA 支架 N 端的结构和动态特征,这可能有助于纤维小体的底物识别和结合。

相似文献

1
Small angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structure.
J Biol Chem. 2013 Mar 15;288(11):7978-7985. doi: 10.1074/jbc.M112.408757. Epub 2013 Jan 22.
2
Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome.
J Biol Chem. 2012 Aug 3;287(32):26953-61. doi: 10.1074/jbc.M112.343897. Epub 2012 Jun 15.
4
In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose.
Appl Environ Microbiol. 2012 Jun;78(12):4301-7. doi: 10.1128/AEM.07959-11. Epub 2012 Apr 20.
5
Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome.
J Mol Biol. 2011 Apr 8;407(4):571-80. doi: 10.1016/j.jmb.2011.01.060. Epub 2011 Feb 15.
6
Structure-function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes.
J Biol Chem. 2018 Mar 16;293(11):4201-4212. doi: 10.1074/jbc.RA117.001241. Epub 2018 Jan 24.
8
Structure of a family 3a carbohydrate-binding module from the cellulosomal scaffoldin CipA of Clostridium thermocellum with flanking linkers: implications for cellulosome structure.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jul;69(Pt 7):733-7. doi: 10.1107/S174430911301614X. Epub 2013 Jun 27.
10
Purification and crystallization of a multimodular heterotrimeric complex containing both type I and type II cohesin-dockerin interactions from the cellulosome of Clostridium thermocellum.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Mar 1;66(Pt 3):327-9. doi: 10.1107/S1744309110001375. Epub 2010 Feb 25.

引用本文的文献

1
Mapping the deformability of natural and designed cellulosomes in solution.
Biotechnol Biofuels Bioprod. 2022 Jun 20;15(1):68. doi: 10.1186/s13068-022-02165-3.
3
Research progress and the biotechnological applications of multienzyme complex.
Appl Microbiol Biotechnol. 2021 Mar;105(5):1759-1777. doi: 10.1007/s00253-021-11121-4. Epub 2021 Feb 10.
4
Cellulosomes: Highly Efficient Cellulolytic Complexes.
Subcell Biochem. 2021;96:323-354. doi: 10.1007/978-3-030-58971-4_9.
5
A Biological Nanomachine at Work: Watching the Cellulosome Degrade Crystalline Cellulose.
ACS Cent Sci. 2020 May 27;6(5):739-746. doi: 10.1021/acscentsci.0c00050. Epub 2020 May 6.
6
Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of .
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11274-E11283. doi: 10.1073/pnas.1809283115. Epub 2018 Nov 14.
8
Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
Nat Rev Microbiol. 2017 Feb;15(2):83-95. doi: 10.1038/nrmicro.2016.164. Epub 2016 Dec 12.
10
The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers.
Plant Cell. 2014 Jul;26(7):2996-3009. doi: 10.1105/tpc.114.126862. Epub 2014 Jul 10.

本文引用的文献

1
Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome.
J Biol Chem. 2012 Aug 3;287(32):26953-61. doi: 10.1074/jbc.M112.343897. Epub 2012 Jun 15.
2
Plant cell walls to ethanol.
Biochem J. 2012 Mar 1;442(2):241-52. doi: 10.1042/BJ20111922.
3
Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome.
J Mol Biol. 2011 Apr 8;407(4):571-80. doi: 10.1016/j.jmb.2011.01.060. Epub 2011 Feb 15.
4
Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers.
J Mol Biol. 2011 Jan 7;405(1):143-57. doi: 10.1016/j.jmb.2010.10.013. Epub 2010 Oct 21.
5
Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates.
Annu Rev Biochem. 2010;79:655-81. doi: 10.1146/annurev-biochem-091208-085603.
7
Structure and flexibility within proteins as identified through small angle X-ray scattering.
Gen Physiol Biophys. 2009 Jun;28(2):174-89. doi: 10.4149/gpb_2009_02_174.
8
Lignocellulose conversion to biofuels: current challenges, global perspectives.
Curr Opin Biotechnol. 2009 Jun;20(3):316-7. doi: 10.1016/j.copbio.2009.05.005. Epub 2009 Jun 10.
9
Protein structure prediction on the Web: a case study using the Phyre server.
Nat Protoc. 2009;4(3):363-71. doi: 10.1038/nprot.2009.2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验