Kirino Y, Ohkuma T, Shimizu H
J Biochem. 1978 Jul;84(1):111-5. doi: 10.1093/oxfordjournals.jbchem.a132099.
The technique of saturation transfer electron spin resonance has been applied to study the rotational diffusion of spin-labeled Ca2+, Mg2+-dependent ATPase molecules in the membranes of sarcoplasmic reticulum vesicles. Comparison of the present data with those for spin-labeled hemoglobin undergoing isotropic rotation leads to a value of 2 X 10(-4) s for the apparent rotational correlation time at 20 degrees C for the membrane-bound protein. Consideration of the anisotropy of the Brownian rotation of the membrane-bound ATPase suggests that the true correlation time for the expected axial rotation may be somewhat smaller than the apparent value. An Arrhenius plot of the rotational motion shows a break, which is interpreted as indicating the occurrence of a conformational change of the ATPase molecule at about 15 degrees C.