Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21487-92. doi: 10.1073/pnas.1006821107. Epub 2010 Nov 29.
Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.
通过翻译控制调节基因表达是一种基本机制,涉及从记忆形成到先天免疫等多种生物学过程,其失调会导致人类疾病。对翻译控制的全基因组分析旨在识别与细胞质 mRNA 水平无关的差异翻译。出于这个原因,大多数研究将基因的翻译水平测量为对数比(翻译水平除以相应的细胞质 mRNA 水平,这些水平是在平行获得的)。反直觉的是,由于数学上的必要性,这些对数比往往与细胞质 mRNA 水平高度相关。因此,它们不能有效地纠正细胞质 mRNA 水平,并产生大量的生物学假阳性和假阴性。我们表明,分析部分方差是一种更好的选择,它可以产生独立于细胞质 mRNA 水平的翻译活性估计值。当与用于估计误差方差的方差收缩方法结合使用时,分析部分方差具有更大的统计功效和更少的基因被鉴定为翻译调节的额外好处,这仅仅是由于不现实的低方差估计,而不是由于翻译活性的大变化。与对数比不同,这种正式的分析方法以严格的统计学方式估计翻译效应,消除了低效和易错启发式方法的需要,并产生了与生物学功能一致的结果。该方法适用于从常用的多核糖体微阵列方法和基于测序的核糖体分析方法获得的数据集。