Suppr超能文献

Viking 浏览器用于连接组学:可扩展的多用户注释和大容量数据集的总结。

The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets.

机构信息

Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, U.S.A.

出版信息

J Microsc. 2011 Jan;241(1):13-28. doi: 10.1111/j.1365-2818.2010.03402.x.

Abstract

Modern microscope automation permits the collection of vast amounts of continuous anatomical imagery in both two and three dimensions. These large data sets present significant challenges for data storage, access, viewing, annotation and analysis. The cost and overhead of collecting and storing the data can be extremely high. Large data sets quickly exceed an individual's capability for timely analysis and present challenges in efficiently applying transforms, if needed. Finally annotated anatomical data sets can represent a significant investment of resources and should be easily accessible to the scientific community. The Viking application was our solution created to view and annotate a 16.5 TB ultrastructural retinal connectome volume and we demonstrate its utility in reconstructing neural networks for a distinctive retinal amacrine cell class. Viking has several key features. (1) It works over the internet using HTTP and supports many concurrent users limited only by hardware. (2) It supports a multi-user, collaborative annotation strategy. (3) It cleanly demarcates viewing and analysis from data collection and hosting. (4) It is capable of applying transformations in real-time. (5) It has an easily extensible user interface, allowing addition of specialized modules without rewriting the viewer.

摘要

现代显微镜自动化技术允许在二维和三维空间中连续采集大量的解剖图像。这些大数据集在数据存储、访问、查看、注释和分析方面带来了重大挑战。采集和存储数据的成本和开销可能非常高。大型数据集很快就超出了个人及时分析的能力,如果需要,在有效地应用变换方面也存在挑战。最后,注释的解剖数据集可能代表着资源的重大投入,应该能够方便科学界访问。Viking 应用程序是我们为查看和注释 16.5TB 超微结构视网膜连接组学体积而创建的解决方案,我们展示了它在重建独特视网膜无长突细胞类别的神经网络方面的实用性。Viking 具有几个关键功能。(1) 它通过 HTTP 在互联网上运行,支持许多并发用户,仅受硬件限制。(2) 它支持多用户、协作注释策略。(3) 它干净地将查看和分析与数据采集和托管区分开来。(4) 它能够实时应用变换。(5) 它具有易于扩展的用户界面,允许添加专门的模块,而无需重写查看器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c0/3017751/a259ace4f991/jmi0241-0013-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验