Suppr超能文献

真菌Skn7应激反应及其与毒力的关系。

Fungal Skn7 stress responses and their relationship to virulence.

作者信息

Fassler Jan S, West Ann H

机构信息

Department of Biology, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Eukaryot Cell. 2011 Feb;10(2):156-67. doi: 10.1128/EC.00245-10. Epub 2010 Dec 3.

Abstract

The histidine kinase-based phosphorelay has emerged as a common strategy among bacteria, fungi, protozoa, and plants for triggering important stress responses and interpreting developmental cues in response to environmental as well as chemical, nutritional, and hormone signals. The absence of this type of signaling mechanism in animals makes the so-called "two-component" pathway an attractive target for development of antimicrobial agents. The best-studied eukaryotic example of a two-component pathway is the SLN1 pathway in Saccharomyces cerevisiae, which responds to turgor and other physical properties associated with the fungal cell wall. One of the two phosphoreceiver proteins known as response regulators in this pathway is Skn7, a highly conserved stress-responsive transcription factor with a subset of activities that are dependent on SLN1 pathway phosphorylation and another subset that are independent. Interest in Skn7as a determinant in fungal virulence stems primarily from its well-established role in the oxidative stress response; however, the involvement of Skn7 in maintenance of cell wall integrity may also be relevant. Since the cell wall is crucial for fungal survival, structural and biosynthetic proteins affecting wall composition and signaling pathways that respond to wall stress are likely to play key roles in virulence. Here we review the molecular and phenotypic characteristics of different fungal Skn7 proteins and consider how each of these properties may contribute to fungal virulence.

摘要

基于组氨酸激酶的磷酸化信号转导途径已成为细菌、真菌、原生动物和植物中的一种常见策略,用于触发重要的应激反应,并解读对环境以及化学、营养和激素信号作出响应的发育线索。动物中缺乏这种类型的信号传导机制,使得所谓的“双组分”途径成为开发抗菌剂的一个有吸引力的靶点。研究最深入的真核生物双组分途径的例子是酿酒酵母中的SLN1途径,它对膨压和与真菌细胞壁相关的其他物理特性作出反应。该途径中被称为应答调节因子的两种磷酸受体蛋白之一是Skn7,它是一种高度保守的应激反应转录因子,其一部分活性依赖于SLN1途径的磷酸化,另一部分则与之无关。对Skn7作为真菌毒力决定因素的兴趣主要源于其在氧化应激反应中已确立的作用;然而,Skn7参与维持细胞壁完整性也可能与之相关。由于细胞壁对真菌的生存至关重要,影响细胞壁组成的结构和生物合成蛋白以及对细胞壁应激作出反应的信号通路可能在毒力中起关键作用。在此,我们综述了不同真菌Skn7蛋白的分子和表型特征,并考虑了这些特性中的每一个如何可能对真菌毒力产生影响。

相似文献

1
Fungal Skn7 stress responses and their relationship to virulence.
Eukaryot Cell. 2011 Feb;10(2):156-67. doi: 10.1128/EC.00245-10. Epub 2010 Dec 3.
2
Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain.
Eukaryot Cell. 2009 May;8(5):768-78. doi: 10.1128/EC.00021-09. Epub 2009 Mar 20.
10
Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata.
Fungal Genet Biol. 2012 Oct;49(10):802-13. doi: 10.1016/j.fgb.2012.07.006. Epub 2012 Aug 10.

引用本文的文献

1
Population structure in a fungal human pathogen is potentially linked to pathogenicity.
Nat Commun. 2025 Aug 15;16(1):7594. doi: 10.1038/s41467-025-62777-9.
2
The regulatory network of transcription factor Skn7 collaborates with bHLH1 during fungal-fungal interactions.
Microbiol Spectr. 2025 Sep 2;13(9):e0048425. doi: 10.1128/spectrum.00484-25. Epub 2025 Jul 30.
3
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
4
Machine learning reveals genes impacting oxidative stress resistance across yeasts.
Nat Commun. 2025 Jul 1;16(1):5866. doi: 10.1038/s41467-025-60189-3.
5
When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in .
mSphere. 2025 Jan 28;10(1):e0064423. doi: 10.1128/msphere.00644-23. Epub 2024 Dec 20.
7
Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms.
Plant Pathol J. 2024 Jun;40(3):235-250. doi: 10.5423/PPJ.RW.01.2024.0001. Epub 2024 Jun 1.
8
The role of VdSti1 in Verticillium dahliae: insights into pathogenicity and stress responses.
Front Microbiol. 2024 Apr 4;15:1377713. doi: 10.3389/fmicb.2024.1377713. eCollection 2024.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
Stress signalling to fungal stress-activated protein kinase pathways.
FEMS Microbiol Lett. 2010 May;306(1):1-8. doi: 10.1111/j.1574-6968.2010.01937.x. Epub 2010 Feb 24.
3
Skn7p is involved in oxidative stress response and virulence of Candida glabrata.
Mycopathologia. 2010 Feb;169(2):81-90. doi: 10.1007/s11046-009-9233-5. Epub 2009 Aug 20.
4
Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus.
Mycol Res. 2009 Oct;113(Pt 10):1208-15. doi: 10.1016/j.mycres.2009.08.005. Epub 2009 Aug 12.
5
A fungal phylogeny based on 82 complete genomes using the composition vector method.
BMC Evol Biol. 2009 Aug 10;9:195. doi: 10.1186/1471-2148-9-195.
7
Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10171-6. doi: 10.1073/pnas.0900604106. Epub 2009 Jun 11.
8
Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain.
Eukaryot Cell. 2009 May;8(5):768-78. doi: 10.1128/EC.00021-09. Epub 2009 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验