Suppr超能文献

内皮衍生超极化因子:传播内皮的影响。

EDHF: spreading the influence of the endothelium.

机构信息

Department of Pharmacology, University of Oxford, UK.

出版信息

Br J Pharmacol. 2011 Oct;164(3):839-52. doi: 10.1111/j.1476-5381.2010.01148.x.

Abstract

Our view of the endothelium was transformed around 30 years ago, from one of an inert barrier to that of a key endocrine organ central to cardiovascular function. This dramatic change followed the discoveries that endothelial cells (ECs) elaborate the vasodilators prostacyclin and nitric oxide. The key to these discoveries was the use of the quintessentially pharmacological technique of bioassay. Bioassay also revealed endothelium-derived hyperpolarizing factor (EDHF), particularly important in small arteries and influencing blood pressure and flow distribution. The basic idea of EDHF as a diffusible factor causing smooth muscle hyperpolarization (and thus vasodilatation) has evolved into one of a complex pathway activated by endothelial Ca(2+) opening two Ca(2+) -sensitive K(+) -channels, K(Ca)2.3 and K(Ca)3.1. Combined application of apamin and charybdotoxin blocked EDHF responses, revealing the critical role of these channels as iberiotoxin was unable to substitute for charybdotoxin. We showed these channels are arranged in endothelial microdomains, particularly within projections towards the adjacent smooth muscle, and close to interendothelial gap junctions. Activation of K(Ca) channels hyperpolarizes ECs, and K(+) efflux through them can act as a diffusible 'EDHF' stimulating Na(+) /K(+) -ATPase and inwardly rectifying K-channels. In parallel, hyperpolarizing current can spread from the endothelium to the smooth muscle through myoendothelial gap junctions upon endothelial projections. The resulting radial hyperpolarization mobilized by EDHF is complemented by spread of hyperpolarization along arteries and arterioles, effecting distant dilatation dependent on the endothelium. So the complexity of the endothelium still continues to amaze and, as knowledge evolves, provides considerable potential for novel approaches to modulate blood pressure.

摘要

大约 30 年前,我们对内皮细胞的认识发生了转变,从一个被动的屏障转变为心血管功能的关键内分泌器官。这一戏剧性的变化源于内皮细胞(EC)产生血管扩张剂前列环素和一氧化氮的发现。这些发现的关键是使用了药理学中典型的生物测定技术。生物测定还揭示了内皮衍生超极化因子(EDHF),它在小动脉中尤为重要,影响血压和血流分布。EDHF 作为一种可扩散因子引起平滑肌超极化(从而导致血管扩张)的基本概念已经演变成一种由内皮细胞 Ca(2+) 开放两种 Ca(2+) 敏感的 K(+) 通道(K(Ca)2.3 和 K(Ca)3.1)激活的复杂途径。联合应用 apamin 和 charybdotoxin 阻断 EDHF 反应,揭示了这些通道的关键作用,因为 iberiotoxin 无法替代 charybdotoxin。我们表明,这些通道排列在内皮细胞的微域中,特别是在朝向相邻平滑肌的突起中,并且靠近内皮细胞间隙连接。K(Ca) 通道的激活使 EC 超极化,通过它们的 K(+) 外流可以作为可扩散的“EDHF”刺激 Na(+) /K(+) -ATP 酶和内向整流性 K 通道。同时,超极化电流可以通过内皮细胞突起从内皮细胞传播到平滑肌。EDHF 引起的径向超极化的传播,补充了沿动脉和小动脉传播的超极化,从而实现了依赖内皮的远距离扩张。因此,内皮细胞的复杂性仍然令人惊叹,随着知识的不断发展,为调节血压提供了很大的潜在可能性。

相似文献

1
EDHF: spreading the influence of the endothelium.内皮衍生超极化因子:传播内皮的影响。
Br J Pharmacol. 2011 Oct;164(3):839-52. doi: 10.1111/j.1476-5381.2010.01148.x.
7
EDHF: an update.内皮依赖性超极化因子:最新进展
Clin Sci (Lond). 2009 Jul 16;117(4):139-55. doi: 10.1042/CS20090096.

引用本文的文献

3
The machinery of healthy vasodilatation: an overview.健康血管舒张机制概述
Pflugers Arch. 2025 Jun 6. doi: 10.1007/s00424-025-03096-2.
4
WNK kinase is a vasoactive chloride sensor in endothelial cells.WNK 激酶是内皮细胞中的血管活性氯传感器。
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2322135121. doi: 10.1073/pnas.2322135121. Epub 2024 Apr 3.
10

本文引用的文献

1
Guide to Receptors and Channels (GRAC), 5th edition.《受体和离子通道手册》(GRAC)第 5 版。
Br J Pharmacol. 2011 Nov;164 Suppl 1(Suppl 1):S1-324. doi: 10.1111/j.1476-5381.2011.01649_1.x.
5
Epoxyeicosatrienoic acids and endothelium-dependent responses.环氧二十碳三烯酸与内皮依赖性反应。
Pflugers Arch. 2010 May;459(6):881-95. doi: 10.1007/s00424-010-0804-6. Epub 2010 Mar 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验