Suppr超能文献

制备用于三维细胞培养的梯度水凝胶支架。

Fabricating gradient hydrogel scaffolds for 3D cell culture.

作者信息

Chatterjee Kaushik, Young Marian F, Simon Carl G

机构信息

Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

出版信息

Comb Chem High Throughput Screen. 2011 May;14(4):227-36. doi: 10.2174/138620711795222455.

Abstract

Optimizing cell-material interactions is critical for maximizing regeneration in tissue engineering. Combinatorial and high-throughput (CHT) methods can be used to systematically screen tissue scaffolds to identify optimal biomaterial properties. Previous CHT platforms in tissue engineering have involved a two-dimensional (2D) cell culture format where cells were cultured on material surfaces. However, these platforms are inadequate to predict cellular response in a three-dimensional (3D) tissue scaffold. We have developed a simple CHT platform to screen cell-material interactions in 3D culture format that can be applied to screen hydrogel scaffolds. Herein we provide detailed instructions on a method to prepare gradients in elastic modulus of photopolymerizable hydrogels.

摘要

优化细胞与材料的相互作用对于在组织工程中实现最大程度的再生至关重要。组合和高通量(CHT)方法可用于系统地筛选组织支架,以确定最佳的生物材料特性。先前组织工程中的CHT平台涉及二维(2D)细胞培养形式,即细胞在材料表面上培养。然而,这些平台不足以预测三维(3D)组织支架中的细胞反应。我们开发了一种简单的CHT平台,以三维培养形式筛选细胞与材料的相互作用,该平台可用于筛选水凝胶支架。在此,我们提供了一种制备可光聚合水凝胶弹性模量梯度的方法的详细说明。

相似文献

1
Fabricating gradient hydrogel scaffolds for 3D cell culture.
Comb Chem High Throughput Screen. 2011 May;14(4):227-36. doi: 10.2174/138620711795222455.
2
The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening.
Biomaterials. 2010 Jul;31(19):5051-62. doi: 10.1016/j.biomaterials.2010.03.024. Epub 2010 Apr 7.
3
Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells.
J Biomater Sci Polym Ed. 2019 Aug;30(11):895-918. doi: 10.1080/09205063.2019.1612725. Epub 2019 May 20.
4
Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
Acta Biomater. 2019 Nov;99:100-109. doi: 10.1016/j.actbio.2019.09.018. Epub 2019 Sep 16.
5
Fabrication of three-dimensional cell constructs using temperature-responsive hydrogel.
Tissue Eng Part A. 2010 Aug;16(8):2497-504. doi: 10.1089/ten.TEA.2009.0523.
7
Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.
Tissue Eng. 2004 Sep-Oct;10(9-10):1316-22. doi: 10.1089/ten.2004.10.1316.
8
Advances in bioactive hydrogels to probe and direct cell fate.
Annu Rev Chem Biomol Eng. 2012;3:421-44. doi: 10.1146/annurev-chembioeng-062011-080945. Epub 2012 Apr 17.
9
Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
Biomaterials. 2014 Jan;35(4):1150-62. doi: 10.1016/j.biomaterials.2013.10.056. Epub 2013 Nov 8.
10
Capillary morphogenesis in PEG-collagen hydrogels.
Biomaterials. 2013 Dec;34(37):9331-40. doi: 10.1016/j.biomaterials.2013.08.016. Epub 2013 Sep 7.

引用本文的文献

1
A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration.
Biomater Biosyst. 2024 Jul 26;15:100099. doi: 10.1016/j.bbiosy.2024.100099. eCollection 2024 Sep.
2
Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms.
Adv Drug Deliv Rev. 2023 May;196:114771. doi: 10.1016/j.addr.2023.114771. Epub 2023 Mar 6.
3
Biochemical and Mechanical Gradients Synergize To Enhance Cartilage Zonal Organization in 3D.
ACS Biomater Sci Eng. 2018 Oct 8;4(10):3561-3569. doi: 10.1021/acsbiomaterials.8b00775. Epub 2018 Sep 17.
4
3D cell culture stimulates the secretion of in vivo like extracellular vesicles.
Sci Rep. 2019 Sep 10;9(1):13012. doi: 10.1038/s41598-019-49671-3.
6
7
Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments.
Nat Commun. 2018 Feb 9;9(1):614. doi: 10.1038/s41467-018-03021-5.
8
Microvessel manifold for perfusion and media exchange in three-dimensional cell cultures.
Biomicrofluidics. 2016 Sep 23;10(5):054109. doi: 10.1063/1.4963145. eCollection 2016 Sep.
9
Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells.
Braz J Med Biol Res. 2015 May;48(5):392-400. doi: 10.1590/1414-431X20144322. Epub 2015 Mar 3.
10
Spatial regulation of controlled bioactive factor delivery for bone tissue engineering.
Adv Drug Deliv Rev. 2015 Apr;84:45-67. doi: 10.1016/j.addr.2014.11.018. Epub 2014 Nov 29.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
2
The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening.
Biomaterials. 2010 Jul;31(19):5051-62. doi: 10.1016/j.biomaterials.2010.03.024. Epub 2010 Apr 7.
3
Cell interactions with biomaterials gradients and arrays.
Comb Chem High Throughput Screen. 2009 Jul;12(6):544-53. doi: 10.2174/138620709788681961.
4
Osteoblast response to dimethacrylate composites varying in composition, conversion and roughness using a combinatorial approach.
Biomaterials. 2009 Sep;30(27):4480-7. doi: 10.1016/j.biomaterials.2009.05.019. Epub 2009 Jun 10.
5
Physical approaches to biomaterial design.
Nat Mater. 2009 Jan;8(1):15-23. doi: 10.1038/nmat2344.
6
Substrate modulus directs neural stem cell behavior.
Biophys J. 2008 Nov 1;95(9):4426-38. doi: 10.1529/biophysj.108.132217. Epub 2008 Jul 25.
8
The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system.
Biomaterials. 2008 Jun;29(17):2597-607. doi: 10.1016/j.biomaterials.2008.02.005. Epub 2008 Mar 14.
10
Modeling tissue morphogenesis and cancer in 3D.
Cell. 2007 Aug 24;130(4):601-10. doi: 10.1016/j.cell.2007.08.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验