Roberts Steven A, DiVito Kyle A, Ligler Frances S, Adams André A, Daniele Michael A
Center for Bio/Molecular Science and Engineering , U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, USA.
Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina , Chapel Hill, 911 Oval Dr., Raleigh, North Carolina 27695, USA.
Biomicrofluidics. 2016 Sep 23;10(5):054109. doi: 10.1063/1.4963145. eCollection 2016 Sep.
Integrating a perfusable microvasculature system is a substantial challenge for "on-chip" tissue models. We have developed an inclusive on-chip platform that is capable of maintaining laminar flow through porous biosynthetic microvessels. The biomimetic microfluidic device is able to deliver and generate a steady perfusion of media containing small-molecule nutrients, drugs, and gases in three-dimensional cell cultures, while replicating flow-induced mechanical stimuli. Here, we characterize the diffusion of small molecules from the perfusate, across the microvessel wall, and into the matrix of a 3D cell culture.
整合一个可灌注的微血管系统对于“芯片上”的组织模型来说是一项重大挑战。我们开发了一个综合性的芯片平台,该平台能够维持通过多孔生物合成微血管的层流。这种仿生微流控装置能够在三维细胞培养中输送并产生含有小分子营养物质、药物和气体的培养基的稳定灌注,同时复制流动诱导的机械刺激。在这里,我们描述了小分子从灌注液中扩散,穿过微血管壁,并进入三维细胞培养基质的过程。