Suppr超能文献

用于快速稀疏估计脑组织微观结构特性的迭代子空间筛选

Iterative Subspace Screening for Rapid Sparse Estimation of Brain Tissue Microstructural Properties.

作者信息

Yap Pew-Thian, Zhang Yong, Shen Dinggang

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University, USA.

Department of Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2015 Oct;9349:223-230. doi: 10.1007/978-3-319-24553-9_28. Epub 2015 Nov 18.

Abstract

Diffusion magnetic resonance imaging (DMRI) is a powerful imaging modality due to its unique ability to extract microstructural information by utilizing restricted diffusion to probe compartments that are much smaller than the voxel size. Quite commonly, a mixture of models is fitted to the data to infer microstructural properties based on the estimated parameters. The fitting process is often non-linear and computationally very intensive. Recent work by Daducci et al. has shown that speed improvement of several orders of magnitude can be achieved by linearizing and recasting the fitting problem as a linear system, involving the estimation of the volume fractions associated with a set of diffusion basis functions that span the signal space. However, to ensure coverage of the signal space, sufficiently dense sampling of the parameter space is needed. This can be problematic because the number of basis functions increases exponentially with the number of parameters, causing computational intractability. We propose in this paper a method called iterative subspace screening (ISS) for tackling this ultrahigh dimensional problem. ISS requires only solving the problem in a medium-size subspace with a dimension that is much smaller than the original space spanned by all diffusion basis functions but is larger than the expected cardinality of the support of the solution. The solution obtained for this subspace is used to screen the basis functions to identify a new subspace that is pertinent to the target problem. These steps are performed iteratively to seek both the solution subspace and the solution itself. We apply ISS to the estimation of the fiber orientation distribution function (ODF) and demonstrate that it improves estimation robustness and accuracy.

摘要

扩散磁共振成像(DMRI)是一种强大的成像方式,因为它具有独特的能力,即通过利用受限扩散来探测比体素尺寸小得多的区域,从而提取微观结构信息。通常,会将一系列模型拟合到数据上,以便根据估计参数推断微观结构属性。拟合过程往往是非线性的,计算量也非常大。Daducci等人最近的研究表明,通过将拟合问题线性化并重新构建为一个线性系统,涉及估计与一组跨越信号空间的扩散基函数相关的体积分数,可以实现几个数量级的速度提升。然而,为了确保信号空间的覆盖范围,需要对参数空间进行足够密集的采样。这可能会带来问题,因为基函数的数量会随着参数数量呈指数增长,导致计算上难以处理。我们在本文中提出了一种名为迭代子空间筛选(ISS)的方法来解决这个超高维问题。ISS只需要在一个中等规模的子空间中解决问题,该子空间的维度比所有扩散基函数所跨越的原始空间小得多,但比解的支持集的预期基数大。在这个子空间中得到的解用于筛选基函数,以识别与目标问题相关的新子空间。这些步骤会迭代执行,以寻找解子空间和解本身。我们将ISS应用于纤维取向分布函数(ODF)的估计,并证明它提高了估计的稳健性和准确性。

相似文献

6
Fiber Orientation Estimation Guided by a Deep Network.基于深度网络的纤维取向估计
Med Image Comput Comput Assist Interv. 2017 Sep;10433:575-583. doi: 10.1007/978-3-319-66182-7_66. Epub 2017 Sep 4.
7
Multimodal super-resolved q-space deep learning.多模态超分辨率 q 空间深度学习。
Med Image Anal. 2021 Jul;71:102085. doi: 10.1016/j.media.2021.102085. Epub 2021 Apr 21.
9
Fuzzy Sparse Subspace Clustering for Infrared Image Segmentation.基于模糊稀疏子空间聚类的红外图像分割。
IEEE Trans Image Process. 2023;32:2132-2146. doi: 10.1109/TIP.2023.3263102. Epub 2023 Apr 6.

引用本文的文献

本文引用的文献

3
The WU-Minn Human Connectome Project: an overview.《WU-Minn 人类连接组计划:概述》。
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
6
Axon diameter mapping in crossing fibers with diffusion MRI.利用扩散磁共振成像对交叉纤维进行轴突直径映射
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):82-9. doi: 10.1007/978-3-642-23629-7_11.
7
SPHERE: SPherical Harmonic Elastic REgistration of HARDI data.SPHERE:基于 SPherical Harmonic 的弥散张量 HARDI 数据配准。
Neuroimage. 2011 Mar 15;55(2):545-56. doi: 10.1016/j.neuroimage.2010.12.015. Epub 2010 Dec 13.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验