Suppr超能文献

细胞膜是大肠杆菌雾化过程中受损的主要部位。

The cell membrane as a major site of damage during aerosolization of Escherichia coli.

机构信息

Defence Science & Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom.

出版信息

Appl Environ Microbiol. 2011 Feb;77(3):920-5. doi: 10.1128/AEM.01116-10. Epub 2010 Dec 10.

Abstract

This study aimed to provide data on the survival and site of damage of Escherichia coli cells following aerosolization using two different techniques, nebulization and flow focusing. Four metabolic stains were assessed for their ability to detect respiratory activities and membrane homeostasis in aerosolized E. coli cells. The degree of sublethal injury increased significantly over the 10-min period of aerosolization in E. coli cells aerosolized by using the Collison nebulizer, reaching up to 99.9% of the population. In contrast, a significantly lower proportion of the population was sublethally damaged during aerosolization using the flow-focusing aerosol generator (FFAG). Concomitantly, loss of membrane homeostasis increased at a higher rate in nebulized cells (68 to 71%) than in those aerosolized by using the FFAG (32 to 34%). The activities of respiratory enzymes decreased at increased rates in nebulized cells (27 to 37%) compared to the rates of decrease in cells aerosolized by using the FFAG (59 to 61%). The results indicate that the physiology of an aerosolized bacterium is linked to the method of aerosol generation and may affect the interpretation of a range of aerobiological phenomenon.

摘要

本研究旨在提供使用两种不同技术(雾化和流聚焦)雾化后大肠杆菌细胞存活和损伤部位的数据。评估了四种代谢染色剂,以检测雾化大肠杆菌细胞中的呼吸活性和膜动态平衡。在用 Collison 雾化器雾化大肠杆菌细胞的 10 分钟期间,亚致死损伤的程度显著增加,高达 99.9%的细胞受到影响。相比之下,在用流聚焦气溶胶发生器(FFAG)雾化时,亚致死损伤的细胞比例显著降低(68%至 71%)。同时,在雾化细胞中膜动态平衡的丧失速度(68 至 71%)高于在使用 FFAG 雾化的细胞中(32 至 34%)。与使用 FFAG 雾化的细胞(59%至 61%)相比,呼吸酶的活性在雾化细胞中的下降速度更快(27%至 37%)。这些结果表明,气溶胶化细菌的生理学与气溶胶生成方法有关,可能会影响一系列空气生物学现象的解释。

相似文献

1
The cell membrane as a major site of damage during aerosolization of Escherichia coli.
Appl Environ Microbiol. 2011 Feb;77(3):920-5. doi: 10.1128/AEM.01116-10. Epub 2010 Dec 10.
2
Characterization and deposition of respirable large- and small-particle bioaerosols.
Appl Environ Microbiol. 2008 Oct;74(20):6437-43. doi: 10.1128/AEM.01194-08. Epub 2008 Aug 22.
3
Release of free DNA by membrane-impaired bacterial aerosols due to aerosolization and air sampling.
Appl Environ Microbiol. 2013 Dec;79(24):7780-9. doi: 10.1128/AEM.02859-13. Epub 2013 Oct 4.
6
Differential gene expression in Escherichia coli during aerosolization from liquid suspension.
Appl Microbiol Biotechnol. 2018 Jul;102(14):6257-6267. doi: 10.1007/s00253-018-9083-5. Epub 2018 May 28.
7
Continuous nebulization therapy for asthma with aerosols of beta2 agonists.
Ann Allergy Asthma Immunol. 1998 Jun;80(6):499-508. doi: 10.1016/S1081-1206(10)63074-8.
8
Preferential aerosolization of bacteria in bioaerosols generated in vitro.
J Appl Microbiol. 2017 Sep;123(3):688-697. doi: 10.1111/jam.13514. Epub 2017 Aug 3.
10
Survival of Mycobacterium tuberculosis during experimental aerosolization and implications for aerosol challenge models.
J Appl Microbiol. 2011 Aug;111(2):350-9. doi: 10.1111/j.1365-2672.2011.05069.x. Epub 2011 Jun 30.

引用本文的文献

1
Advancing transcriptomic profiling of airborne bacteria.
Appl Environ Microbiol. 2025 May 21;91(5):e0014825. doi: 10.1128/aem.00148-25. Epub 2025 Apr 28.
3
The atmosphere: a transport medium or an active microbial ecosystem?
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae092.
4
Complete reference genome assemblies and annotations of three MRE162 clones.
Microbiol Resour Announc. 2023 Nov 16;12(11):e0049023. doi: 10.1128/MRA.00490-23. Epub 2023 Oct 9.
5
Aerosol agitation: Quantifying the hydrodynamic stressors on particulates encapsulated in small droplets.
Phys Rev Fluids. 2021 Mar 8;6(3). doi: 10.1103/physrevfluids.6.l031601.
6
Shower water contributes viable nontuberculous mycobacteria to indoor air.
PNAS Nexus. 2022 Nov 10;1(5):pgac145. doi: 10.1093/pnasnexus/pgac145. eCollection 2022 Nov.
7
Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses.
Appl Environ Microbiol. 2021 Jul 27;87(16):e0049721. doi: 10.1128/AEM.00497-21.
9
A Vibrating Mesh Nebulizer as an Alternative to the Collison Three-Jet Nebulizer for Infectious Disease Aerobiology.
Appl Environ Microbiol. 2019 Aug 14;85(17). doi: 10.1128/AEM.00747-19. Print 2019 Sep 1.
10
Optimisation of the Protocol for the LIVE/DEAD BacLight Bacterial Viability Kit for Rapid Determination of Bacterial Load.
Front Microbiol. 2019 Apr 12;10:801. doi: 10.3389/fmicb.2019.00801. eCollection 2019.

本文引用的文献

1
Bacterial responses to photo-oxidative stress.
Nat Rev Microbiol. 2009 Dec;7(12):856-63. doi: 10.1038/nrmicro2237. Epub 2009 Nov 2.
2
The effect of environmental parameters on the survival of airborne infectious agents.
J R Soc Interface. 2009 Dec 6;6 Suppl 6(Suppl 6):S737-46. doi: 10.1098/rsif.2009.0227.focus. Epub 2009 Sep 22.
3
Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus.
FEMS Microbiol Ecol. 2004 Nov 1;50(3):133-42. doi: 10.1016/j.femsec.2004.06.004.
4
The effect of open-air factors on the virulence and viability of airborne Francisella tularensis.
Epidemiol Infect. 2009 Jun;137(6):753-61. doi: 10.1017/S0950268809002076. Epub 2009 Feb 10.
5
Characterization and deposition of respirable large- and small-particle bioaerosols.
Appl Environ Microbiol. 2008 Oct;74(20):6437-43. doi: 10.1128/AEM.01194-08. Epub 2008 Aug 22.
7
Cell envelope stress response in Gram-positive bacteria.
FEMS Microbiol Rev. 2008 Jan;32(1):107-46. doi: 10.1111/j.1574-6976.2007.00091.x.
8
Persistence of category A select agents in the environment.
Appl Environ Microbiol. 2008 Feb;74(3):555-63. doi: 10.1128/AEM.02167-07. Epub 2007 Dec 7.
9
Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress.
Prog Biophys Mol Biol. 2007 Sep-Nov;95(1-3):60-82. doi: 10.1016/j.pbiomolbio.2007.05.001. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验