Suppr超能文献

可吸入大颗粒和小颗粒生物气溶胶的表征与沉积

Characterization and deposition of respirable large- and small-particle bioaerosols.

作者信息

Thomas Richard J, Webber Daniel, Sellors William, Collinge Aaron, Frost Andrew, Stagg Anthony J, Bailey Stephen C, Jayasekera Pramukh N, Taylor Rosa R, Eley Steve, Titball Richard W

机构信息

Defence Science and Technology Laboratory, Salisbury, Wiltshire, United Kingdom.

出版信息

Appl Environ Microbiol. 2008 Oct;74(20):6437-43. doi: 10.1128/AEM.01194-08. Epub 2008 Aug 22.

Abstract

The deposition patterns of large-particle microbiological aerosols within the respiratory tract are not well characterized. A novel system (the flow-focusing aerosol generator [FFAG]) which enables the generation of large (>10-microm) aerosol particles containing microorganisms under laboratory conditions was characterized to permit determination of deposition profiles within the murine respiratory tract. Unlike other systems for generating large aerosol particles, the FFAG is compatible with microbiological containment and the inhalational challenge of animals. By use of entrapped Escherichia coli cells, Bacillus atrophaeus spores, or FluoSphere beads, the properties of aerosols generated by the FFAG were compared with the properties of aerosols generated using the commonly available Collison nebulizer, which preferentially generates small (1- to 3-microm) aerosol particles. More entrapped particulates (15.9- to 19.2-fold) were incorporated into 9- to 17-microm particles generated by the FFAG than by the Collison nebulizer. The 1- to 3-microm particles generated by the Collison nebulizer were more likely to contain a particulate than those generated by the FFAG. E. coli cells aerosolized using the FFAG survived better than those aerosolized using the Collison nebulizer. Aerosols generated by the Collison nebulizer and the FFAG preferentially deposited in the lungs and nasal passages of the murine respiratory tract, respectively. However, significant deposition of material also occurred in the gastrointestinal tract after inhalation of both the small (89.7%)- and large (61.5%)-particle aerosols. The aerosols generated by the Collison nebulizer and the FFAG differ with respect to mass distribution, distribution of the entrapped particulates, bacterial survival, and deposition within the murine respiratory tract.

摘要

呼吸道内大颗粒微生物气溶胶的沉积模式尚未得到充分表征。一种新型系统(流动聚焦气溶胶发生器[FFAG])能够在实验室条件下生成含有微生物的大于10微米的大气溶胶颗粒,对其进行表征以确定在小鼠呼吸道内的沉积概况。与其他生成大气溶胶颗粒的系统不同,FFAG与微生物隔离和动物吸入性攻击兼容。通过使用包埋的大肠杆菌细胞、萎缩芽孢杆菌孢子或荧光微球,将FFAG生成的气溶胶特性与使用常用的碰撞雾化器生成的气溶胶特性进行比较,碰撞雾化器优先生成1至3微米的小气溶胶颗粒。与碰撞雾化器相比,FFAG生成的9至17微米颗粒中包埋的颗粒更多(15.9至19.2倍)。碰撞雾化器生成的1至3微米颗粒比FFAG生成的颗粒更有可能含有颗粒物质。使用FFAG雾化的大肠杆菌细胞比使用碰撞雾化器雾化的细胞存活得更好。碰撞雾化器和FFAG生成的气溶胶分别优先沉积在小鼠呼吸道的肺部和鼻腔。然而,吸入小颗粒(89.7%)和大颗粒(61.5%)气溶胶后,胃肠道也会出现明显的物质沉积。碰撞雾化器和FFAG生成的气溶胶在质量分布、包埋颗粒的分布、细菌存活以及在小鼠呼吸道内的沉积方面存在差异。

相似文献

1
Characterization and deposition of respirable large- and small-particle bioaerosols.
Appl Environ Microbiol. 2008 Oct;74(20):6437-43. doi: 10.1128/AEM.01194-08. Epub 2008 Aug 22.
2
The cell membrane as a major site of damage during aerosolization of Escherichia coli.
Appl Environ Microbiol. 2011 Feb;77(3):920-5. doi: 10.1128/AEM.01116-10. Epub 2010 Dec 10.
3
A Vibrating Mesh Nebulizer as an Alternative to the Collison Three-Jet Nebulizer for Infectious Disease Aerobiology.
Appl Environ Microbiol. 2019 Aug 14;85(17). doi: 10.1128/AEM.00747-19. Print 2019 Sep 1.
4
Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses.
Appl Environ Microbiol. 2021 Jul 27;87(16):e0049721. doi: 10.1128/AEM.00497-21.
5
Lung deposition of droplet aerosols in monkeys.
Inhal Toxicol. 2008 Sep;20(11):1029-36. doi: 10.1080/08958370802105413.
6
Host stress and immune responses during aerosol challenge of Brown Norway rats with Yersinia pestis.
Front Cell Infect Microbiol. 2012 Nov 30;2:147. doi: 10.3389/fcimb.2012.00147. eCollection 2012.
7
Inhalation Study of Mycobacteriophage D29 Aerosol for Mice by Endotracheal Route and Nose-Only Exposure.
J Aerosol Med Pulm Drug Deliv. 2016 Oct;29(5):393-405. doi: 10.1089/jamp.2015.1233. Epub 2016 Jan 8.
8
Real-time characterization of chemical threat agent aerosols for improvement of inhalation studies.
Inhal Toxicol. 2023 Jan-Dec;35(9-10):254-265. doi: 10.1080/08958378.2023.2254323. Epub 2023 Sep 20.

引用本文的文献

1
Airborne pathogens diffusion: A comparison between tracer gas and pigmented aerosols for indoor environment analysis.
Heliyon. 2024 Feb 15;10(4):e26076. doi: 10.1016/j.heliyon.2024.e26076. eCollection 2024 Feb 29.
2
Complete reference genome assemblies and annotations of three MRE162 clones.
Microbiol Resour Announc. 2023 Nov 16;12(11):e0049023. doi: 10.1128/MRA.00490-23. Epub 2023 Oct 9.
3
Aerosol Survival, Disinfection and Formalin Inactivation of Nipah Virus.
Viruses. 2022 Sep 16;14(9):2057. doi: 10.3390/v14092057.
5
Current views in chronic obstructive pulmonary disease pathogenesis and management.
Saudi Pharm J. 2021 Dec;29(12):1361-1373. doi: 10.1016/j.jsps.2021.10.008. Epub 2021 Oct 29.
7
Putting some context to the aerosolization debate around SARS-CoV-2.
J Hosp Infect. 2020 Jun;105(2):381-382. doi: 10.1016/j.jhin.2020.04.040. Epub 2020 Apr 30.
8
Human Inhalation Exposure to Aerosol and Health Effect: Aerosol Monitoring and Modelling Regional Deposited Doses.
Int J Environ Res Public Health. 2020 Mar 16;17(6):1923. doi: 10.3390/ijerph17061923.
9
Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review.
Int J Environ Res Public Health. 2020 Feb 8;17(3):1084. doi: 10.3390/ijerph17031084.

本文引用的文献

1
Measurement of the respiratory volumes of laboratory animals.
Am J Physiol. 1947 Jul 1;150(1):70-7. doi: 10.1152/ajplegacy.1947.150.1.70.
2
The relevance of animal models for aerosol studies.
J Aerosol Med Pulm Drug Deliv. 2008 Mar;21(1):113-24. doi: 10.1089/jamp.2007.0673.
3
Transmission identification of Escherichia coli aerosol in chicken houses to their environments using ERIC-PCR.
Sci China C Life Sci. 2008 Feb;51(2):164-73. doi: 10.1007/s11427-008-0021-0.
4
Pesticide aerosol characteristics in the vicinity of an agricultural vehicle cab during application.
J Occup Environ Hyg. 2007 Jul;4(7):476-82. doi: 10.1080/15459620701386293.
6
Particle size distribution and inhalation dose of shower water under selected operating conditions.
Inhal Toxicol. 2007 Apr;19(4):333-42. doi: 10.1080/08958370601144241.
7
Review of aerosol transmission of influenza A virus.
Emerg Infect Dis. 2006 Nov;12(11):1657-62. doi: 10.3201/eid1211.060426.
8
Difference between the spore sizes of Bacillus anthracis and other Bacillus species.
J Appl Microbiol. 2007 Feb;102(2):303-12. doi: 10.1111/j.1365-2672.2006.03111.x.
10
Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises.
J Hosp Infect. 2006 Oct;64(2):100-14. doi: 10.1016/j.jhin.2006.05.022. Epub 2006 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验