Suppr超能文献

自噬性肿瘤基质模型的癌症:氧化应激和酮体产生在为肿瘤细胞代谢提供燃料中的作用。

The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism.

机构信息

Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Cell Cycle. 2010 Sep 1;9(17):3485-505. doi: 10.4161/cc.9.17.12721.

Abstract

A loss of stromal Cav-1 in the tumor fibroblast compartment is associated with early tumor recurrence, lymph-node metastasis, and tamoxifen-resistance, resulting in poor clinical outcome in breast cancer patients. Here, we have used Cav-1 (-/-) null mice as a pre-clinical model for this "lethal tumor micro-environment." Metabolic profiling of Cav-1 (-/-) mammary fat pads revealed the upregulation of numerous metabolites (nearly 100), indicative of a major catabolic phenotype. Our results are consistent with the induction of oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy. The two most prominent metabolites that emerged from this analysis were ADMA (asymmetric dimethyl arginine) and BHB (beta-hydroxybutyrate; a ketone body), which are markers of oxidative stress and mitochondrial dysfunction, respectively. Transcriptional profiling of Cav-1 (-/-) stromal cells and human tumor stroma from breast cancer patients directly supported an association with oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy, as well as ADMA and ketone production. MircoRNA profiling of Cav-1 (-/-) stromal cells revealed the upregulation of two key cancer-related miR's, namely miR-31 and miR-34c. Consistent with our metabolic findings, these miR's are associated with oxidative stress (miR-34c) or activation of the hypoxic response/HIF1a (miR-31), which is sufficient to drive authophagy/mitophagy. Thus, via an unbiased comprehensive analysis of a lethal tumor micro-environment, we have identified a number of candidate biomarkers (ADMA, ketones, and miR-31/34c) that could be used to identify high-risk cancer patients at diagnosis, for treatment stratification and/or for evaluating therapeutic efficacy during anti-cancer therapy. We propose that the levels of these key biomarkers (ADMA, ketones/BHB, miR-31, and miR-34c) could be (1) assayed using serum or plasma from cancer patients, or (2) performed directly on excised tumor tissue. Importantly, induction of oxidative stress and autophagy/mitophagy in the tumor stromal compartment provides a means by which epithelial cancer cells can directly "feed off" of stromal-derived essential nutrients, chemical building blocks (amino acids, nucleotides), and energy-rich metabolites (glutamine, pyruvate, ketones/BHB), driving tumor progression and metastasis. Essentially, aggressive cancer cells are "eating" the cancer-associated fibroblasts via autophagy/mitophagy in the tumor micro-environment. Lastly, we discuss that this "Autophagic Tumor Stroma Model of Cancer Metabolism" provides a viable solution to the "Autophagy Paradox" in cancer etiology and chemo-therapy.

摘要

基质 Cav-1 在肿瘤成纤维细胞区室中的缺失与早期肿瘤复发、淋巴结转移和他莫昔芬耐药相关,导致乳腺癌患者的临床预后不良。在这里,我们使用 Cav-1(-/-)基因敲除小鼠作为这种“致命肿瘤微环境”的临床前模型。对 Cav-1(-/-)乳腺脂肪垫的代谢组学分析显示,大量代谢物(近 100 种)上调,表明存在主要的分解代谢表型。我们的结果与氧化应激、线粒体功能障碍和自噬/线粒体自噬的诱导一致。从该分析中出现的两个最突出的代谢物是 ADMA(不对称二甲基精氨酸)和 BHB(β-羟基丁酸;酮体),它们分别是氧化应激和线粒体功能障碍以及自噬/线粒体自噬的标志物。Cav-1(-/-)基质细胞和来自乳腺癌患者的人肿瘤基质的转录组学分析直接支持与氧化应激、线粒体功能障碍和自噬/线粒体自噬以及 ADMA 和酮体产生相关的关联。Cav-1(-/-)基质细胞的 microRNA 分析显示,两种关键的癌症相关 miR 的上调,即 miR-31 和 miR-34c。与我们的代谢发现一致,这些 miR 与氧化应激(miR-34c)或缺氧反应/HIF1a 的激活(miR-31)相关,这足以驱动自噬/线粒体自噬。因此,通过对致命肿瘤微环境进行全面的无偏分析,我们已经确定了一些候选生物标志物(ADMA、酮体和 miR-31/34c),这些标志物可用于在诊断时识别高风险癌症患者,进行治疗分层和/或评估癌症治疗期间的治疗效果。我们提出,这些关键生物标志物(ADMA、酮体/BHB、miR-31 和 miR-34c)的水平可以(1)通过检测癌症患者的血清或血浆进行检测,或者(2)直接在切除的肿瘤组织上进行检测。重要的是,在肿瘤基质区室中诱导氧化应激和自噬/线粒体自噬为上皮癌细胞直接“消耗”源自基质的必需营养物质、化学构建块(氨基酸、核苷酸)和富含能量的代谢物(谷氨酰胺、丙酮酸、酮体/BHB)提供了一种手段,从而推动肿瘤进展和转移。本质上,侵袭性癌细胞通过肿瘤微环境中的自噬/线粒体自噬“吞噬”癌相关成纤维细胞。最后,我们讨论了这种“癌症代谢的自噬性肿瘤基质模型”为癌症病因学和化学疗法中的“自噬悖论”提供了可行的解决方案。

相似文献

引用本文的文献

3
Decoding the mechanisms behind second primary cancers.解读第二原发性癌症背后的机制。
J Transl Med. 2025 Jan 24;23(1):115. doi: 10.1186/s12967-025-06151-9.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验