DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Pauwelsstr. 8, D-52056 Aachen, Germany.
Nat Mater. 2011 Jan;10(1):67-73. doi: 10.1038/nmat2904.
Advanced biomaterials and scaffolds for tissue engineering place high demands on materials and exceed the passive biocompatibility requirements previously considered acceptable for biomedical implants. Together with degradability, the activation of specific cell–material interactions and a three-dimensional environment that mimics the extracellular matrix are core challenges and prerequisites for the organization of living cells to functional tissue. Moreover, although bioactive signalling combined with minimization of non-specific protein adsorption is an advanced modification technique for flat surfaces, it is usually not accomplished for three-dimensional fibrous scaffolds used in tissue engineering. Here, we present a one-step preparation of fully synthetic, bioactive and degradable extracellular matrix-mimetic scaffolds by electrospinning, using poly(D,L-lactide-co-glycolide) as the matrix polymer. Addition of a functional, amphiphilic macromolecule based on star-shaped poly(ethylene oxide) transforms current biomedically used degradable polyesters into hydrophilic fibres, which causes the suppression of non-specific protein adsorption on the fibres’ surface. The subsequent covalent attachment of cell-adhesion-mediating peptides to the hydrophilic fibres promotes specific bioactivation and enables adhesion of cells through exclusive recognition of the immobilized binding motifs. This approach permits synthetic materials to directly control cell behaviour, for example, resembling the binding of cells to fibronectin immobilized on collagen fibres in the extracellular matrix of connective tissue.
用于组织工程的先进生物材料和支架对材料提出了很高的要求,超过了以前认为可接受的生物医学植入物的被动生物相容性要求。与可降解性一起,特定细胞-材料相互作用的激活和模拟细胞外基质的三维环境是组织活细胞形成功能性组织的核心挑战和前提条件。此外,尽管生物活性信号结合最小化非特异性蛋白质吸附是用于平面表面的先进修饰技术,但通常无法完成用于组织工程的三维纤维支架。在这里,我们通过静电纺丝,使用聚(D,L-丙交酯-共-乙交酯)作为基质聚合物,展示了一步法制备完全合成、生物活性和可降解的细胞外基质模拟支架。添加基于星形聚(氧化乙烯)的功能性两亲性大分子将目前生物医学中使用的可降解聚酯转化为亲水纤维,从而抑制纤维表面的非特异性蛋白质吸附。随后将细胞黏附介导肽共价连接到亲水纤维上,促进特定的生物活化,并通过对固定化结合基序的独特识别来促进细胞黏附。这种方法允许合成材料直接控制细胞行为,例如,类似于细胞与细胞外基质中胶原蛋白纤维上固定的纤连蛋白的结合。