Suppr超能文献

关于稀疏编码与字典学习的非线性推广

On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.

作者信息

Xie Yuchen, Ho Jeffrey, Vemuri Baba

机构信息

Qualcomm Technologies, Inc., San Diego, CA 92121 USA.

出版信息

JMLR Workshop Conf Proc. 2013;28(3):1480-1488.

Abstract

Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ , and the dictionary is learned from the training data using the vector space structure of ℝ and its Euclidean -metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.

摘要

现有的字典学习算法基于这样的假设

数据是欧几里得向量空间ℝ中的向量,并且字典是利用ℝ的向量空间结构及其欧几里得度量从训练数据中学习得到的。然而,在许多应用中,特征和数据通常源自不支持全局线性(向量空间)结构的黎曼流形。此外,现有字典学习算法的外在观点对于对该流形的内在几何进行建模和整合而言变得不合适,而这种内在几何对于应用可能是重要且关键的。本文提出了一种针对黎曼流形上的数据进行稀疏编码和字典学习的新颖框架,并且表明现有的稀疏编码和字典学习方法可被视为这里所提出的更通用框架的特殊(欧几里得)情形。我们表明,对于几类重要的黎曼流形,字典和稀疏编码都能被有效地计算出来,并且我们使用计算机视觉和医学成像分析中的两个著名分类问题对所提出的方法进行了验证。

相似文献

2
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.基于高斯 RBF 核的黎曼流形上的核方法。
IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77. doi: 10.1109/TPAMI.2015.2414422.
4
Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices.黎曼字典学习和正定矩阵的稀疏编码。
IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):2859-2871. doi: 10.1109/TNNLS.2016.2601307. Epub 2016 Sep 13.
6
Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video.基于欧式到黎曼度量学习的视频人脸识别方法
IEEE Trans Pattern Anal Mach Intell. 2018 Dec;40(12):2827-2840. doi: 10.1109/TPAMI.2017.2776154. Epub 2017 Nov 22.
8
Alternatively Constrained Dictionary Learning For Image Superresolution.替代约束字典学习的图像超分辨率方法。
IEEE Trans Cybern. 2014 Mar;44(3):366-77. doi: 10.1109/TCYB.2013.2256347. Epub 2013 May 2.
9
A Comprehensive Look at Coding Techniques on Riemannian Manifolds.关于黎曼流形上编码技术的全面审视。
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5701-5712. doi: 10.1109/TNNLS.2018.2812799. Epub 2018 Mar 27.

本文引用的文献

1
Tensor sparse coding for positive definite matrices.张量稀疏编码在正定矩阵中的应用。
IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):592-605. doi: 10.1109/TPAMI.2013.143.
6
Learning overcomplete representations.学习超完备表示。
Neural Comput. 2000 Feb;12(2):337-65. doi: 10.1162/089976600300015826.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验