Suppr超能文献

通过混合模型进行图像驱动的群体分析。

Image-driven population analysis through mixture modeling.

作者信息

Sabuncu Mert R, Balci Serdar K, Shenton Martha E, Golland Polina

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

IEEE Trans Med Imaging. 2009 Sep;28(9):1473-87. doi: 10.1109/TMI.2009.2017942. Epub 2009 Mar 24.

Abstract

We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover subpopulations that correspond to interesting structural or functional "modes."

摘要

我们提出了iCluster算法,这是一种快速且高效的算法,它在使用参数化非线性变换模型对一组图像进行配准的同时对其进行聚类。该算法的输出是少量代表群体中不同模式的模板图像。这与传统的、假设驱动的计算解剖学方法形成对比,后者假设使用单个模板来构建图谱。我们基于将图像群体作为可变形模板图像混合的生成模型推导出该算法。我们在四个实验中验证并探索了我们的方法。在第一个实验中,我们使用合成数据来探索算法的行为,并为参数设置的设计选择提供依据。在第二个实验中,我们展示了拥有多个图谱对于在包含健康对照和精神分裂症患者的一组受试者中定位颞叶脑结构的应用的效用。接下来,我们使用iCluster将415名年龄在18岁至96岁之间的受试者的全脑磁共振成像体积数据集划分为三个解剖亚组。我们的分析表明,这些亚组主要对应于年龄组。模板揭示了这些年龄组之间显著的结构差异,证实了衰老研究中的先前发现。在最后一个实验中,我们对15名痴呆患者和15名年龄匹配的健康对照进行了iCluster分析。该算法产生了两种模式,其中一种仅包含痴呆患者。这些结果表明,该算法可用于发现与有趣的结构或功能“模式”相对应的亚群体。

相似文献

1
Image-driven population analysis through mixture modeling.通过混合模型进行图像驱动的群体分析。
IEEE Trans Med Imaging. 2009 Sep;28(9):1473-87. doi: 10.1109/TMI.2009.2017942. Epub 2009 Mar 24.
2
Discovering modes of an image population through mixture modeling.通过混合建模发现图像群体的模式。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.
5
Multiple Atlas construction from a heterogeneous brain MR image collection.从异构脑磁共振图像集合中构建多个图谱。
IEEE Trans Med Imaging. 2013 Mar;32(3):628-35. doi: 10.1109/TMI.2013.2239654. Epub 2013 Jan 14.
8
Multi-atlas skull-stripping.多图谱颅骨剥离。
Acad Radiol. 2013 Dec;20(12):1566-76. doi: 10.1016/j.acra.2013.09.010.
9
A deformable cosegmentation algorithm for brain MR images.一种用于脑部磁共振图像的可变形协同分割算法。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3215-8. doi: 10.1109/EMBC.2012.6346649.

引用本文的文献

3
A Neonatal Bimodal MR-CT Head Template.一种新生儿头部双模态磁共振成像-计算机断层扫描模板。
PLoS One. 2017 Jan 27;12(1):e0166112. doi: 10.1371/journal.pone.0166112. eCollection 2017.
5
Statistical shape analysis: From landmarks to diffeomorphisms.统计形状分析:从地标点到微分同胚
Med Image Anal. 2016 Oct;33:155-158. doi: 10.1016/j.media.2016.06.025. Epub 2016 Jun 23.
7
A Kalman Filtering Perspective for Multiatlas Segmentation.多图谱分割的卡尔曼滤波视角
SIAM J Imaging Sci. 2015;8(2):1007-1029. doi: 10.1137/130933423. Epub 2015 Apr 30.

本文引用的文献

1
What Data to Co-register for Computing Atlases.计算图谱需要共同配准哪些数据。
Proc IEEE Int Conf Comput Vis. 2007 Oct;2007. doi: 10.1109/ICCV.2007.4409157.
2
Discovering modes of an image population through mixture modeling.通过混合建模发现图像群体的模式。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.
4
Atlas stratification.图谱分层。
Med Image Anal. 2007 Oct;11(5):443-57. doi: 10.1016/j.media.2007.07.001. Epub 2007 Jul 25.
9
Least biased target selection in probabilistic atlas construction.概率图谱构建中偏差最小的目标选择
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):419-26. doi: 10.1007/11566489_52.
10
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验