Sabuncu Mert R, Balci Serdar K, Shenton Martha E, Golland Polina
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
IEEE Trans Med Imaging. 2009 Sep;28(9):1473-87. doi: 10.1109/TMI.2009.2017942. Epub 2009 Mar 24.
We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover subpopulations that correspond to interesting structural or functional "modes."
我们提出了iCluster算法,这是一种快速且高效的算法,它在使用参数化非线性变换模型对一组图像进行配准的同时对其进行聚类。该算法的输出是少量代表群体中不同模式的模板图像。这与传统的、假设驱动的计算解剖学方法形成对比,后者假设使用单个模板来构建图谱。我们基于将图像群体作为可变形模板图像混合的生成模型推导出该算法。我们在四个实验中验证并探索了我们的方法。在第一个实验中,我们使用合成数据来探索算法的行为,并为参数设置的设计选择提供依据。在第二个实验中,我们展示了拥有多个图谱对于在包含健康对照和精神分裂症患者的一组受试者中定位颞叶脑结构的应用的效用。接下来,我们使用iCluster将415名年龄在18岁至96岁之间的受试者的全脑磁共振成像体积数据集划分为三个解剖亚组。我们的分析表明,这些亚组主要对应于年龄组。模板揭示了这些年龄组之间显著的结构差异,证实了衰老研究中的先前发现。在最后一个实验中,我们对15名痴呆患者和15名年龄匹配的健康对照进行了iCluster分析。该算法产生了两种模式,其中一种仅包含痴呆患者。这些结果表明,该算法可用于发现与有趣的结构或功能“模式”相对应的亚群体。