Suppr超能文献

基于模型的虚拟试验方法在重症监护中进行严格血糖控制的验证。

Validation of a model-based virtual trials method for tight glycemic control in intensive care.

机构信息

Dept. of Mechanical Engoneering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.

出版信息

Biomed Eng Online. 2010 Dec 14;9:84. doi: 10.1186/1475-925X-9-84.

Abstract

BACKGROUND

In-silico virtual patients and trials offer significant advantages in cost, time and safety for designing effective tight glycemic control (TGC) protocols. However, no such method has fully validated the independence of virtual patients (or resulting clinical trial predictions) from the data used to create them. This study uses matched cohorts from a TGC clinical trial to validate virtual patients and in-silico virtual trial models and methods.

METHODS

Data from a 211 patient subset of the Glucontrol trial in Liege, Belgium. Glucontrol-A (N = 142) targeted 4.4-6.1 mmol/L and Glucontrol-B (N = 69) targeted 7.8-10.0 mmol/L. Cohorts were matched by APACHE II score, initial BG, age, weight, BMI and sex (p > 0.25). Virtual patients are created by fitting a clinically validated model to clinical data, yielding time varying insulin sensitivity profiles (SI(t)) that drives in-silico patients.Model fit and intra-patient (forward) prediction errors are used to validate individual in-silico virtual patients. Self-validation (tests A protocol on Group-A virtual patients; and B protocol on B virtual patients) and cross-validation (tests A protocol on Group-B virtual patients; and B protocol on A virtual patients) are used in comparison to clinical data to assess ability to predict clinical trial results.

RESULTS

Model fit errors were small (<0.25%) for all patients, indicating model fitness. Median forward prediction errors were: 4.3, 2.8 and 3.5% for Group-A, Group-B and Overall (A+B), indicating individual virtual patients were accurate representations of real patients. SI and its variability were similar between cohorts indicating they were metabolically similar.Self and cross validation results were within 1-10% of the clinical data for both Group-A and Group-B. Self-validation indicated clinically insignificant errors due to model and/or clinical compliance. Cross-validation clearly showed that virtual patients enabled by identified patient-specific SI(t) profiles can accurately predict the performance of independent and different TGC protocols.

CONCLUSIONS

This study fully validates these virtual patients and in silico virtual trial methods, and clearly shows they can accurately simulate, in advance, the clinical results of a TGC protocol, enabling rapid in silico protocol design and optimization. These outcomes provide the first rigorous validation of a virtual in-silico patient and virtual trials methodology.

摘要

背景

在设计有效的严格血糖控制(TGC)方案方面,基于计算机的虚拟患者和试验在成本、时间和安全性方面具有显著优势。然而,还没有一种方法能够完全验证虚拟患者(或由此产生的临床试验预测)的独立性,不受用于创建它们的数据的影响。本研究使用来自比利时列日 TGC 临床试验的匹配队列来验证虚拟患者和计算机模拟虚拟试验模型和方法。

方法

来自比利时列日 Glucontrol 试验的 211 名患者亚组的数据。Glucontrol-A(N=142)的目标血糖值为 4.4-6.1mmol/L,Glucontrol-B(N=69)的目标血糖值为 7.8-10.0mmol/L。队列通过 APACHE II 评分、初始 BG、年龄、体重、BMI 和性别进行匹配(p>0.25)。通过将经过临床验证的模型拟合到临床数据中,创建虚拟患者,生成随时间变化的胰岛素敏感性曲线(SI(t)),从而驱动计算机模拟患者。使用个体患者内(向前)预测误差来验证个体计算机模拟虚拟患者。自我验证(在 Group-A 虚拟患者上测试 A 方案;在 B 虚拟患者上测试 B 方案)和交叉验证(在 Group-B 虚拟患者上测试 A 方案;在 A 虚拟患者上测试 B 方案)用于与临床数据进行比较,以评估预测临床试验结果的能力。

结果

所有患者的模型拟合误差均较小(<0.25%),表明模型拟合良好。Group-A、Group-B 和总体(A+B)的中位向前预测误差分别为 4.3%、2.8%和 3.5%,表明个体虚拟患者是真实患者的准确代表。队列之间的 SI 及其变异性相似,表明它们的代谢情况相似。自我和交叉验证结果在 Group-A 和 Group-B 中均与临床数据相差 1-10%。自我验证表明,由于模型和/或临床依从性,存在临床意义较小的误差。交叉验证清楚地表明,基于识别出的个体患者特异性 SI(t) 曲线的虚拟患者可以准确预测独立且不同的 TGC 方案的性能。

结论

本研究充分验证了这些虚拟患者和计算机模拟虚拟试验方法,清楚地表明它们可以提前准确模拟 TGC 方案的临床结果,从而能够快速进行计算机模拟方案设计和优化。这些结果提供了对虚拟计算机模拟患者和虚拟试验方法学的首次严格验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d95/3224899/b9325efb4713/1475-925X-9-84-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验