Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85721-0093, USA.
Free Radic Biol Med. 2011 Sep 1;51(5):993-9. doi: 10.1016/j.freeradbiomed.2010.12.005. Epub 2010 Dec 13.
The condition of oxidative stress arises when oxidant production exceeds antioxidant activity in cells and plasma. The overabundance of oxidants is mechanistically connected to the multifactorial etiology of insulin resistance, primarily in skeletal muscle tissue, and the subsequent development of type 2 diabetes. Two important mechanisms for this oxidant excess are (1) the mitochondrial overproduction of hydrogen peroxide and superoxide ion under conditions of energy surplus and (2) the enhanced activation of cellular NADPH oxidase via angiotensin II receptors. Several recent studies are reviewed that support the concept that direct exposure of mammalian skeletal muscle to an oxidant stress (including hydrogen peroxide) results in stimulation of the serine kinase p38 mitogen-activated protein kinase (p38 MAPK), and that the engagement of this stress-activated p38 MAPK signaling is mechanistically associated with diminished insulin-dependent stimulation of insulin signaling elements and glucose transport activity. The beneficial interactions between the antioxidant α-lipoic acid and the advanced glycation end-product inhibitor pyridoxamine that ameliorate oxidant stress-associated defects in whole-body and skeletal-muscle insulin action in the obese Zucker rat, a model of prediabetes, are also addressed. Overall, this review highlights the importance of oxidative stress in the development of insulin resistance in mammalian skeletal muscle tissue, at least in part via a p38-MAPK-dependent mechanism, and indicates that interventions that reduce this oxidative stress and oxidative damage can improve insulin action in insulin-resistant animal models. Strategies to prevent and ameliorate oxidative stress remain important in the overall treatment of insulin resistance and type 2 diabetes.
当细胞和血浆中的氧化剂生成超过抗氧化剂活性时,就会出现氧化应激状态。氧化剂的过剩与胰岛素抵抗的多因素病因机制相关,主要发生在骨骼肌组织中,随后发展为 2 型糖尿病。这种氧化剂过剩的两个重要机制是:(1)在能量过剩的情况下,线粒体过度生成过氧化氢和超氧离子;(2)通过血管紧张素 II 受体增强细胞 NADPH 氧化酶的激活。本文综述了一些最近的研究,这些研究支持这样的概念,即哺乳动物骨骼肌直接暴露于氧化剂应激(包括过氧化氢)会刺激丝氨酸激酶 p38 丝裂原活化蛋白激酶 (p38 MAPK),并且这种应激激活的 p38 MAPK 信号通路与胰岛素依赖性刺激胰岛素信号元件和葡萄糖转运活性的减少在机制上相关。抗氧化剂 α-硫辛酸和晚期糖基化终产物抑制剂吡哆胺之间的有益相互作用可以改善肥胖 Zucker 大鼠(糖尿病前期模型)全身和骨骼肌胰岛素作用中与氧化剂应激相关的缺陷,这种作用也得到了研究。总的来说,这篇综述强调了氧化应激在哺乳动物骨骼肌组织中胰岛素抵抗发展中的重要性,至少部分是通过 p38-MAPK 依赖性机制,并且表明减少这种氧化应激和氧化损伤的干预措施可以改善胰岛素抵抗动物模型中的胰岛素作用。预防和改善氧化应激的策略在胰岛素抵抗和 2 型糖尿病的整体治疗中仍然很重要。