Suppr超能文献

寻求一个用于统一和定义纳米科学的系统框架。

In quest of a systematic framework for unifying and defining nanoscience.

作者信息

Tomalia Donald A

机构信息

Department of Chemistry, The National Dendrimer & Nanotechnology Center, Central Michigan University, Mt. Pleasant, MI 48859 USA.

出版信息

J Nanopart Res. 2009 Aug;11(6):1251-1310. doi: 10.1007/s11051-009-9632-z. Epub 2009 May 26.

Abstract

This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a "central paradigm" (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core-shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11051-009-9632-z) contains supplementary material, which is available to authorized users.

摘要

本文基于历史第一原理和逐步逻辑,提出了一个统一和定义纳米科学的系统框架,该逻辑导致了传统元素/小分子化学的“核心范式”(即统一框架)。因此,提出了一种纳米材料分类路线图,将所有纳米物质分为两类:第一类:离散的、定义明确的;第二类:统计的、未定义的纳米颗粒。我们只考虑第一类定义明确的纳米颗粒,它们作为根据以下定义的关键纳米尺度设计参数(CNDPs)的函数,单分散度>90%:(a)尺寸,(b)形状,(c)表面化学,(d)柔韧性,以及(e)元素组成。这些纳米颗粒分为硬(H)(即无机基)或软(S)(即有机基)两类,发现它们表现出普遍的原子模拟特征,包括:(1)零维(0D)核壳纳米结构占主导地位,(2)作为离散的、量化的纳米单元自组装或化学键合的能力,以及(3)表现出明确的纳米尺度化合价和化学计量,让人联想到基于原子的元素。这些离散的纳米颗粒类别被称为硬或软颗粒纳米元素。文献中报道了许多描述这些纳米元素化学键合/组装的例子。我们将这些硬:硬(H-n:H-n)、软:软(S-n:S-n)或硬:软(H-n:S-n)纳米元素组合称为纳米化合物。由于它们的量化特征,据报道许多纳米元素和纳米化合物类别表现出明确的纳米周期性质模式。这些周期性性质模式取决于它们的量化纳米特征(CNDPs),并极大地影响内在物理化学性质(即熔点、反应性/自组装、空间位阻和纳米封装)以及重要的功能/性能性质(即磁性、光子、电子和毒理学性质)。我们提出这一观点,作为朝着更清晰地定义合成纳米化学以及提供统一纳米科学的系统框架迈出的适度第一步。随着进一步的发展,人们应该期待未来纳米周期表的演变,以预测纳米科学领域重要的风险/收益界限。电子补充材料:本文的在线版本(doi:10.1007/s11051-009-9632-z)包含补充材料,授权用户可以获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/295e/2988219/9e2e2633a670/11051_2009_9632_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验