Suppr超能文献

机械信号在发育和疾病中的作用机制。

Mechanisms of mechanical signaling in development and disease.

机构信息

Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, PA 19104, USA.

出版信息

J Cell Sci. 2011 Jan 1;124(Pt 1):9-18. doi: 10.1242/jcs.071001.

Abstract

The responses of cells to chemical signals are relatively well characterized and understood. Cells also respond to mechanical signals in the form of externally applied force and forces generated by cell-matrix and cell-cell contacts. Many features of cell function that are generally considered to be under the control of chemical stimuli, such as motility, proliferation, differentiation and survival, can also be altered by changes in the stiffness of the substrate to which the cells are adhered, even when their chemical environment remains unchanged. Many examples from clinical and whole animal studies have shown that changes in tissue stiffness are related to specific disease characteristics and that efforts to restore normal tissue mechanics have the potential to reverse or prevent cell dysfunction and disease. How cells detect stiffness is largely unknown, but the cellular structures that measure stiffness and the general principles by which they work are beginning to be revealed. This Commentary highlights selected recent reports of mechanical signaling during disease development, discusses open questions regarding the physical mechanisms by which cells sense stiffness, and examines the relationship between studies in vitro on flat substrates and the more complex three-dimensional setting in vivo.

摘要

细胞对化学信号的反应相对来说特征明确,也容易理解。细胞还会对外部施加的力以及细胞-基质和细胞-细胞接触产生的力等机械信号做出反应。一般认为,许多受化学刺激控制的细胞功能特征,如运动性、增殖、分化和存活,也可以通过改变细胞附着的基质的刚度来改变,即使它们的化学环境保持不变。许多来自临床和全动物研究的例子表明,组织硬度的变化与特定的疾病特征有关,并且努力恢复正常的组织力学特性有可能逆转或预防细胞功能障碍和疾病。细胞如何检测硬度在很大程度上是未知的,但测量硬度的细胞结构以及它们工作的一般原理开始被揭示。本评论重点介绍了疾病发展过程中机械信号传递的一些最新报告,讨论了细胞感知硬度的物理机制方面的悬而未决的问题,并研究了体外在平面基底上进行的研究与体内更复杂的三维环境之间的关系。

相似文献

1
Mechanisms of mechanical signaling in development and disease.
J Cell Sci. 2011 Jan 1;124(Pt 1):9-18. doi: 10.1242/jcs.071001.
2
The hard life of soft cells.
Cell Motil Cytoskeleton. 2009 Aug;66(8):597-605. doi: 10.1002/cm.20382.
4
Control of cellular responses to mechanical cues through YAP/TAZ regulation.
J Biol Chem. 2019 Nov 15;294(46):17693-17706. doi: 10.1074/jbc.REV119.007963. Epub 2019 Oct 8.
5
Stiffness Sensing by Cells.
Physiol Rev. 2020 Apr 1;100(2):695-724. doi: 10.1152/physrev.00013.2019. Epub 2019 Nov 21.
6
Cell mechanics: integrating cell responses to mechanical stimuli.
Annu Rev Biomed Eng. 2007;9:1-34. doi: 10.1146/annurev.bioeng.9.060906.151927.
7
Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.
Tissue Eng Part B Rev. 2017 Oct;23(5):494-504. doi: 10.1089/ten.TEB.2016.0500. Epub 2017 May 3.
8
Mechanobiology and diseases of mechanotransduction.
Ann Med. 2003;35(8):564-77. doi: 10.1080/07853890310016333.
9
Mechanotransduction in T Cell Development, Differentiation and Function.
Cells. 2020 Feb 5;9(2):364. doi: 10.3390/cells9020364.
10
The cellular mechanobiology of aging: from biology to mechanics.
Ann N Y Acad Sci. 2021 May;1491(1):3-24. doi: 10.1111/nyas.14529. Epub 2020 Nov 24.

引用本文的文献

1
Molecular Biology of ACL Graft Healing: Early Mechanical Loading Perspective.
Orthop Rev (Pavia). 2025 Jul 26;17:140716. doi: 10.52965/001c.140716. eCollection 2025.
2
β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis.
iScience. 2025 May 15;28(6):112676. doi: 10.1016/j.isci.2025.112676. eCollection 2025 Jun 20.
4
Effect of elastic modulus of tumour and non-tumour cells on vibration-induced behaviours.
Sci Rep. 2025 Apr 16;15(1):13199. doi: 10.1038/s41598-025-97837-z.
6
Chemotaxis of Drosophila border cells is modulated by tissue geometry through dispersion of chemoattractants.
iScience. 2025 Feb 5;28(3):111959. doi: 10.1016/j.isci.2025.111959. eCollection 2025 Mar 21.
7
YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders.
Front Cell Dev Biol. 2025 Jan 28;13:1522705. doi: 10.3389/fcell.2025.1522705. eCollection 2025.
8
On-chip non-contact mechanical cell stimulation - quantification of SKOV-3 alignment to suspended microstructures.
Heliyon. 2024 Dec 30;11(1):e41433. doi: 10.1016/j.heliyon.2024.e41433. eCollection 2025 Jan 15.
9
Numerical Flow Simulations of the Shear Stress Forces Arising in Filtration Slits during Glomerular Filtration in Rat Kidney.
J Am Soc Nephrol. 2025 Feb 1;36(2):219-230. doi: 10.1681/ASN.0000000513. Epub 2024 Sep 30.
10
Cell Division and Motility Enable Hexatic Order in Biological Tissues.
Phys Rev Lett. 2024 May 24;132(21):218402. doi: 10.1103/PhysRevLett.132.218402.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
2
Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics.
J Phys Condens Matter. 2010 May 19;22(19):194108. doi: 10.1088/0953-8984/22/19/194108. Epub 2010 Apr 26.
3
Biophysical properties of normal and diseased renal glomeruli.
Am J Physiol Cell Physiol. 2011 Mar;300(3):C397-405. doi: 10.1152/ajpcell.00438.2010. Epub 2010 Dec 1.
4
Mechanical regulation of cell function with geometrically modulated elastomeric substrates.
Nat Methods. 2010 Sep;7(9):733-6. doi: 10.1038/nmeth.1487. Epub 2010 Aug 1.
5
Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture.
Science. 2010 Aug 27;329(5995):1078-81. doi: 10.1126/science.1191035. Epub 2010 Jul 15.
6
Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics.
Nature. 2010 Jul 8;466(7303):263-6. doi: 10.1038/nature09198.
7
Optimal matrix rigidity for stress fiber polarization in stem cells.
Nat Phys. 2010 Jun 1;6(6):468-473. doi: 10.1038/nphys1613.
8
Microfabricated substrates as a tool to study cell mechanotransduction.
Med Biol Eng Comput. 2010 Oct;48(10):965-76. doi: 10.1007/s11517-010-0619-9. Epub 2010 Apr 28.
9
Mechanical control of tissue and organ development.
Development. 2010 May;137(9):1407-20. doi: 10.1242/dev.024166.
10
Passive stiffness of myocardium from congenital heart disease and implications for diastole.
Circulation. 2010 Mar 2;121(8):979-88. doi: 10.1161/CIRCULATIONAHA.109.850677. Epub 2010 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验