Suppr超能文献

非最优的 DNA 拓扑异构酶允许维持超螺旋水平并提高肺炎链球菌的适应性。

Nonoptimal DNA topoisomerases allow maintenance of supercoiling levels and improve fitness of Streptococcus pneumoniae.

机构信息

Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera a Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.

出版信息

Antimicrob Agents Chemother. 2011 Mar;55(3):1097-105. doi: 10.1128/AAC.00783-10. Epub 2010 Dec 20.

Abstract

Fluoroquinolones, which target gyrase and topoisomerase IV, are used for treating Streptococcus pneumoniae infections. Fluoroquinolone resistance in this bacterium can arise via point mutation or interspecific recombination with genetically related streptococci. Our previous study on the fitness cost of resistance mutations and recombinant topoisomerases identified GyrAE85K as a high-cost change. However, this cost was compensated for by the presence of a recombinant topoisomerase IV (parC and parE recombinant genes) in strain T14. In this study, we purified wild-type and mutant topoisomerases and compared their enzymatic activities. In strain T14, both gyrase carrying GyrAE85K and recombinant topoisomerase IV showed lower activities (from 2.0- to 3.7-fold) than the wild-type enzymes. These variations of in vitro activity corresponded to changes of in vivo supercoiling levels that were analyzed by two-dimensional electrophoresis of an internal plasmid. Strains carrying GyrAE85K and nonrecombinant topoisomerases had lower (11.1% to 14.3%) supercoiling density (σ) values than the wild type. Those carrying GyrAE85K and recombinant topoisomerases showed either partial or total supercoiling level restoration, with σ values being 7.9% (recombinant ParC) and 1.6% (recombinant ParC and recombinant ParE) lower than those for the wild type. These data suggested that changes acquired by interspecific recombination might be selected because they reduce the fitness cost associated with fluoroquinolone resistance mutations. An increase in the incidence of fluoroquinolone resistance, even in the absence of further antibiotic exposure, is envisaged.

摘要

氟喹诺酮类药物靶向拓扑异构酶 II 和拓扑异构酶 IV,用于治疗肺炎链球菌感染。该细菌对氟喹诺酮类药物的耐药性可以通过点突变或与遗传上相关的链球菌种间重组产生。我们之前关于耐药突变和重组拓扑异构酶的适应性成本研究确定 GyrAE85K 为高成本变化。然而,这种成本在 T14 菌株中由重组拓扑异构酶 IV(parC 和 parE 重组基因)的存在得到了补偿。在这项研究中,我们纯化了野生型和突变型拓扑异构酶,并比较了它们的酶活性。在 T14 菌株中,携带 GyrAE85K 的拓扑异构酶和重组拓扑异构酶 IV 的活性均低于野生型酶(2.0-3.7 倍)。这些体外活性的变化与通过二维电泳分析内部质粒的体内超螺旋水平的变化相对应。携带 GyrAE85K 和非重组拓扑异构酶的菌株的超螺旋密度(σ)值(11.1%至 14.3%)低于野生型。携带 GyrAE85K 和重组拓扑异构酶的菌株显示出部分或完全的超螺旋水平恢复,σ 值比野生型低 7.9%(重组 ParC)和 1.6%(重组 ParC 和重组 ParE)。这些数据表明,种间重组获得的变化可能被选择,因为它们降低了与氟喹诺酮类药物耐药突变相关的适应性成本。预计即使没有进一步的抗生素暴露,氟喹诺酮类药物耐药性的发生率也会增加。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验