Suppr超能文献

一种来自蓝藻的慢 CLC Cl⁻/H⁺反向转运蛋白的结构。

Structure of a slow CLC Cl⁻/H+ antiporter from a cyanobacterium.

机构信息

Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, United States.

出版信息

Biochemistry. 2011 Feb 8;50(5):788-94. doi: 10.1021/bi1019258. Epub 2011 Jan 11.

Abstract

X-ray crystal structures have been previously determined for three CLC-type transporter homologues, but the absolute unitary transport rate is known for only one of these. The Escherichia coli Cl(-)/H(+) antiporter (EC) moves ∼2000 Cl(-) ions/s, an exceptionally high rate among membrane-transport proteins. It is not known whether such rapid turnover is characteristic of ClCs in general or if the E. coli homologue represents a functional outlier. Here, we characterize a CLC Cl(-)/H(+) antiporter from the cyanobacterium Synechocystis sp. PCC6803 (SY) and determine its crystal structure at 3.2 Å resolution. The structure of SY is nearly identical to that of EC, with all residues involved in Cl(-) binding and proton coupling structurally similar to their equivalents in EC. SY actively pumps protons into liposomes against a gradient and moves Cl(-) at ∼20 s(-1), 1% of the EC rate. Electrostatic calculations, used to identify residues contributing to ion binding energetics in SY and EC, highlight two residues flanking the external binding site that are destabilizing for Cl(-) binding in SY and stabilizing in EC. Mutation of these two residues in SY to their counterparts in EC accelerates transport to ∼150 s(-1), allowing measurement of Cl(-)/H(+) stoichiometry of 2/1. SY thus shares a similar structure and a common transport mechanism to EC, but it is by comparison slow, a result that refutes the idea that the transport mechanism of CLCs leads to intrinsically high rates.

摘要

先前已经确定了三种 CLC 型转运蛋白同源物的 X 射线晶体结构,但这些结构中只有一种的单位转运速率是已知的。大肠杆菌 Cl(-)/H(+)反向转运蛋白(EC)的转运速度约为 2000 个 Cl(-)离子/s,在膜转运蛋白中属于极高的速率。目前尚不清楚这种快速周转率是否是 ClCs 的普遍特征,或者大肠杆菌同源物是否代表了一种功能异常。在这里,我们对来自蓝藻集胞藻 PCC6803(SY)的 CLC Cl(-)/H(+)反向转运蛋白进行了表征,并确定了其在 3.2 Å分辨率下的晶体结构。SY 的结构与 EC 的结构几乎完全相同,所有参与 Cl(-)结合和质子偶联的残基在结构上与 EC 中的等效残基相似。SY 主动将质子泵入脂质体中以形成梯度,并以约 20 s(-1)的速度转运 Cl(-),这一速度是 EC 速率的 1%。静电计算用于鉴定在 SY 和 EC 中参与离子结合能的残基,突出了位于外部结合位点两侧的两个残基,它们在 SY 中不利于 Cl(-)结合,而在 EC 中有利于 Cl(-)结合。将 SY 中的这两个残基突变为 EC 中的相应残基,可将转运速度加速至约 150 s(-1),从而可以测量 Cl(-)/H(+)的转运比为 2/1。因此,SY 与 EC 具有相似的结构和共同的转运机制,但与之相比,SY 的转运速度较慢,这一结果驳斥了 CLCs 的转运机制导致内在高速度的观点。

相似文献

1
Structure of a slow CLC Cl⁻/H+ antiporter from a cyanobacterium.
Biochemistry. 2011 Feb 8;50(5):788-94. doi: 10.1021/bi1019258. Epub 2011 Jan 11.
3
Uncoupling and turnover in a Cl-/H+ exchange transporter.
J Gen Physiol. 2007 Apr;129(4):317-29. doi: 10.1085/jgp.200709756.
4
Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels.
Nature. 2004 Feb 26;427(6977):803-7. doi: 10.1038/nature02314.
5
Intracellular proton-transfer mutants in a CLC Cl-/H+ exchanger.
J Gen Physiol. 2009 Feb;133(2):131-8. doi: 10.1085/jgp.200810112. Epub 2009 Jan 12.
6
Surprises from an unusual CLC homolog.
Biophys J. 2012 Nov 7;103(9):L44-6. doi: 10.1016/j.bpj.2012.08.063.
7
Intracellular proton access in a Cl(-)/H(+) antiporter.
PLoS Biol. 2012;10(12):e1001441. doi: 10.1371/journal.pbio.1001441. Epub 2012 Dec 11.
8
Design, function and structure of a monomeric ClC transporter.
Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.
9
The coupled proton transport in the ClC-ec1 Cl(-)/H(+) antiporter.
Biophys J. 2011 Nov 16;101(10):L47-9. doi: 10.1016/j.bpj.2011.10.021. Epub 2011 Nov 15.
10
Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl/H antiporter.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17345-17354. doi: 10.1073/pnas.1901822116. Epub 2019 Aug 13.

引用本文的文献

2
Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl/H antiporter.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17345-17354. doi: 10.1073/pnas.1901822116. Epub 2019 Aug 13.
3
Structure of the CLC-1 chloride channel from .
Elife. 2018 May 29;7:e36629. doi: 10.7554/eLife.36629.
4
Two Cl Ions and a Glu Compete for a Helix Cage in the CLC Proton/Cl Antiporter.
Biophys J. 2017 Sep 5;113(5):1025-1036. doi: 10.1016/j.bpj.2017.07.025.
5
Structure of a CLC chloride ion channel by cryo-electron microscopy.
Nature. 2017 Jan 26;541(7638):500-505. doi: 10.1038/nature20812. Epub 2016 Dec 21.
6
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(-)/H(+) Exchanger ClC-ec1.
J Am Chem Soc. 2016 Mar 9;138(9):3066-75. doi: 10.1021/jacs.5b12062. Epub 2016 Feb 26.
8
Structure and gating of CLC channels and exchangers.
J Physiol. 2015 Sep 15;593(18):4129-38. doi: 10.1113/JP270575. Epub 2015 Jul 28.
9
A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes.
J Physiol. 2015 Sep 15;593(18):4139-50. doi: 10.1113/JP270604. Epub 2015 Jun 26.
10
ClC-1 chloride channels: state-of-the-art research and future challenges.
Front Cell Neurosci. 2015 Apr 27;9:156. doi: 10.3389/fncel.2015.00156. eCollection 2015.

本文引用的文献

1
Design, function and structure of a monomeric ClC transporter.
Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.
2
Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.
3
CLC channels and transporters: proteins with borderline personalities.
Biochim Biophys Acta. 2010 Aug;1798(8):1457-64. doi: 10.1016/j.bbamem.2010.02.022. Epub 2010 Feb 24.
4
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
5
Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters.
Nat Struct Mol Biol. 2009 Dec;16(12):1294-301. doi: 10.1038/nsmb.1704. Epub 2009 Nov 8.
6
Long-pore electrostatics in inward-rectifier potassium channels.
J Gen Physiol. 2008 Dec;132(6):613-32. doi: 10.1085/jgp.200810068. Epub 2008 Nov 10.
7
A provisional transport mechanism for a chloride channel-type Cl-/H+ exchanger.
Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):175-80. doi: 10.1098/rstb.2008.0138.
8
Ion permeation through a Cl--selective channel designed from a CLC Cl-/H+ exchanger.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11194-9. doi: 10.1073/pnas.0804503105. Epub 2008 Aug 4.
9
PBEQ-Solver for online visualization of electrostatic potential of biomolecules.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W270-5. doi: 10.1093/nar/gkn314. Epub 2008 May 28.
10
CLC chloride channels and transporters: from genes to protein structure, pathology and physiology.
Crit Rev Biochem Mol Biol. 2008 Jan-Feb;43(1):3-36. doi: 10.1080/10409230701829110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验