Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
Mol Cell. 2019 Jun 20;74(6):1291-1303.e6. doi: 10.1016/j.molcel.2019.04.001. Epub 2019 Apr 29.
Alternative to the conventional search for single-target, single-compound treatments, combination therapies can open entirely new opportunities to fight antibiotic resistance. However, combinatorial complexity prohibits experimental testing of drug combinations on a large scale, and methods to rationally design combination therapies are lagging behind. Here, we developed a combined experimental-computational approach to predict drug-drug interactions using high-throughput metabolomics. The approach was tested on 1,279 pharmacologically diverse drugs applied to the gram-negative bacterium Escherichia coli. Combining our metabolic profiling of drug response with previously generated metabolic and chemogenomic profiles of 3,807 single-gene deletion strains revealed an unexpectedly large space of inhibited gene functions and enabled rational design of drug combinations. This approach is applicable to other therapeutic areas and can unveil unprecedented insights into drug tolerance, side effects, and repurposing. The compendium of drug-associated metabolome profiles is available at https://zampierigroup.shinyapps.io/EcoPrestMet, providing a valuable resource for the microbiological and pharmacological communities.
与传统的单一靶点、单一化合物治疗方法相比,联合疗法为对抗抗生素耐药性开辟了全新的机会。然而,组合的复杂性使得在大规模上对药物组合进行实验测试变得不可行,而合理设计联合疗法的方法也相对滞后。在这里,我们开发了一种结合实验和计算的方法,利用高通量代谢组学来预测药物相互作用。该方法在革兰氏阴性菌大肠杆菌上对 1279 种具有不同药理学特性的药物进行了测试。将我们对药物反应的代谢组学分析与之前生成的 3807 个单基因缺失菌株的代谢和化学生物基因组学图谱相结合,揭示了一个出人意料的受抑制基因功能的巨大空间,并能够对药物组合进行合理设计。这种方法适用于其他治疗领域,可以为药物耐受性、副作用和再利用提供前所未有的见解。与药物相关的代谢组图谱的摘要可在 https://zampierigroup.shinyapps.io/EcoPrestMet 上获得,为微生物学和药理学领域提供了有价值的资源。