Suppr超能文献

频谱动态因果模型:教学性介绍及其与功能连接性的关系。

Spectral dynamic causal modeling: A didactic introduction and its relationship with functional connectivity.

作者信息

Novelli Leonardo, Friston Karl, Razi Adeel

机构信息

Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Australia.

Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom.

出版信息

Netw Neurosci. 2024 Apr 1;8(1):178-202. doi: 10.1162/netn_a_00348. eCollection 2024.

Abstract

We present a didactic introduction to spectral dynamic causal modeling (DCM), a Bayesian state-space modeling approach used to infer effective connectivity from noninvasive neuroimaging data. Spectral DCM is currently the most widely applied DCM variant for resting-state functional MRI analysis. Our aim is to explain its technical foundations to an audience with limited expertise in state-space modeling and spectral data analysis. Particular attention will be paid to cross-spectral density, which is the most distinctive feature of spectral DCM and is closely related to functional connectivity, as measured by (zero-lag) Pearson correlations. In fact, the model parameters estimated by spectral DCM are those that best reproduce the cross-correlations between all measurements-at all time lags-including the zero-lag correlations that are usually interpreted as functional connectivity. We derive the functional connectivity matrix from the model equations and show how changing a single effective connectivity parameter can affect all pairwise correlations. To complicate matters, the pairs of brain regions showing the largest changes in functional connectivity do not necessarily coincide with those presenting the largest changes in effective connectivity. We discuss the implications and conclude with a comprehensive summary of the assumptions and limitations of spectral DCM.

摘要

我们对频谱动态因果模型(DCM)进行了教学性介绍,DCM是一种贝叶斯状态空间建模方法,用于从无创神经成像数据中推断有效连接性。频谱DCM是目前静息态功能磁共振成像分析中应用最广泛的DCM变体。我们的目的是向在状态空间建模和频谱数据分析方面专业知识有限的读者解释其技术基础。我们将特别关注互谱密度,它是频谱DCM最显著的特征,并且与功能连接性密切相关,功能连接性通过(零滞后)皮尔逊相关性来衡量。事实上,频谱DCM估计的模型参数是那些能在所有时间滞后下最佳重现所有测量值之间互相关性的参数,包括通常被解释为功能连接性的零滞后相关性。我们从模型方程中推导出功能连接矩阵,并展示改变单个有效连接性参数如何影响所有成对相关性。复杂的是,功能连接性变化最大的脑区对不一定与有效连接性变化最大的脑区对一致。我们讨论了其中的含义,并对频谱DCM的假设和局限性进行了全面总结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c6/10898785/897025377fce/netn-8-1-178-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验