Suppr超能文献

DNA弯曲蛋白理论中的内在协同性与力产生协同性。

Intrinsic and force-generated cooperativity in a theory of DNA-bending proteins.

作者信息

Zhang Houyin, Marko John F

机构信息

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051906. doi: 10.1103/PhysRevE.82.051906. Epub 2010 Nov 3.

Abstract

We study a statistical-mechanical model of the binding of DNA-bending proteins to the double helix including applied tension and binding cooperativity effects. Intrinsic cooperativity of binding sharpens force-extension curves and causes enhancement of fluctuation of extension and protein occupation. This model also allows us to estimate the intrinsic cooperativity in experiments by measuring the peak value of the slope of extension versus chemical-potential curves. This analysis suggests the presence of force-dependent cooperativity even in the absence of explicit intrinsic (energetic) cooperativity. To further understand this effect, we analyze a model with a pair of bends at variable spacing to obtain a spacing-dependent free energy of interaction between the two proteins. We find that the interaction is always attractive and has an exponential decay as a function of bend spacing. For forces greater than k(B)T/A, where A is the persistence length, the interaction decay length is approximately k(B)TA/(4f) in accord with theoretical expectations. However, the force dependence of the strength of the interaction is more complex. For short interprotein separations, the interaction strength saturates at a level which varies roughly as f(1/2), while at longer separations the amplitude of the exponential decay increases faster than linearly with force. Our results can be applied to single molecule experiments to measure the cooperativity between DNA-bending proteins or between other molecules which deform the semiflexible polymer with which they bind. Force-mediated interaction of DNA-bending proteins suggests a mechanism whereby tension in DNA in vivo could alter the distribution of proteins bound along DNA, causing chromosome refolding, or changes in gene expression.

摘要

我们研究了一种DNA弯曲蛋白与双螺旋结合的统计力学模型,其中包括施加的张力和结合协同效应。结合的内在协同性使力-伸长曲线变尖锐,并导致伸长波动和蛋白占据率的增强。该模型还使我们能够通过测量伸长与化学势曲线斜率的峰值来估计实验中的内在协同性。这种分析表明,即使在没有明确的内在(能量)协同性的情况下,也存在力依赖的协同性。为了进一步理解这种效应,我们分析了一个具有可变间距的一对弯曲的模型,以获得两种蛋白质之间间距依赖的相互作用自由能。我们发现这种相互作用总是吸引性的,并且作为弯曲间距的函数呈指数衰减。对于大于k(B)T/A的力(其中A是持久长度),相互作用衰减长度约为k(B)TA/(4f),这与理论预期一致。然而,相互作用强度的力依赖性更为复杂。对于较短的蛋白间距离,相互作用强度在一个大致随f(1/2)变化的水平上饱和,而在较长距离时,指数衰减的幅度随力的增加比线性增加更快。我们的结果可应用于单分子实验,以测量DNA弯曲蛋白之间或与它们结合的半柔性聚合物发生变形的其他分子之间的协同性。DNA弯曲蛋白的力介导相互作用提示了一种机制,通过该机制体内DNA的张力可以改变沿DNA结合的蛋白分布,导致染色体重新折叠或基因表达变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验