Suppr超能文献

通过可变范围弹性耦合实现的DNA-蛋白质协同结合。

DNA-protein cooperative binding through variable-range elastic coupling.

作者信息

Rudnick J, Bruinsma R

机构信息

Department of Physics, University of California at Los Angeles, Los Angeles, California 90095-1547, USA.

出版信息

Biophys J. 1999 Apr;76(4):1725-33. doi: 10.1016/S0006-3495(99)77334-0.

Abstract

Cooperativity plays an important role in the action of proteins bound to DNA. A simple mechanism for cooperativity, in the form of a tension-mediated interaction between proteins bound to DNA at two different locations, is proposed. These proteins are not in direct physical contact. DNA segments intercalating bound proteins are modeled as a worm-like chain, which is free to deform in two dimensions. The tension-controlled protein-protein interaction is the consequence of two effects produced by the protein binding. The first is the introduction of a bend in the host DNA and the second is the modification of the bending modulus of the DNA in the immediate vicinity of the bound protein. The interaction between two bound proteins may be either attractive or repulsive, depending on their relative orientation on the DNA. Applied tension controls both the strength and the range of protein-protein interactions in this model. Properties of the cooperative interaction are discussed, along with experimental implications.

摘要

协同性在与DNA结合的蛋白质的作用中起着重要作用。本文提出了一种简单的协同机制,其形式为在两个不同位置与DNA结合的蛋白质之间通过张力介导的相互作用。这些蛋白质没有直接的物理接触。将插入结合蛋白质的DNA片段建模为一个类蠕虫链,它可以在二维空间中自由变形。张力控制的蛋白质-蛋白质相互作用是蛋白质结合产生的两种效应的结果。第一种效应是在宿主DNA中引入一个弯曲部,第二种效应是在结合蛋白质紧邻区域改变DNA的弯曲模量。两个结合蛋白质之间的相互作用可能是吸引性的,也可能是排斥性的,这取决于它们在DNA上的相对取向。在该模型中,施加的张力控制着蛋白质-蛋白质相互作用的强度和范围。本文讨论了协同相互作用的性质以及实验意义。

相似文献

1
DNA-protein cooperative binding through variable-range elastic coupling.
Biophys J. 1999 Apr;76(4):1725-33. doi: 10.1016/S0006-3495(99)77334-0.
2
Intrinsic and force-generated cooperativity in a theory of DNA-bending proteins.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051906. doi: 10.1103/PhysRevE.82.051906. Epub 2010 Nov 3.
3
Model of DNA bending by cooperative binding of proteins.
Phys Rev Lett. 2008 Jul 18;101(3):038101. doi: 10.1103/PhysRevLett.101.038101. Epub 2008 Jul 14.
4
Effects of DNA-distorting proteins on DNA elastic response.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011905. doi: 10.1103/PhysRevE.68.011905. Epub 2003 Jul 15.
5
Twist- and tension-mediated elastic coupling between DNA-binding proteins.
Phys Rev Lett. 2009 May 1;102(17):178102. doi: 10.1103/PhysRevLett.102.178102. Epub 2009 Apr 30.
6
Protein-DNA interactions: A structural analysis.
J Mol Biol. 1999 Apr 16;287(5):877-96. doi: 10.1006/jmbi.1999.2659.
7
Binding mechanisms of TATA box-binding proteins: DNA kinking is stabilized by specific hydrogen bonds.
Biophys J. 2000 Apr;78(4):1988-96. doi: 10.1016/S0006-3495(00)76746-4.
8
Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d.
J Mol Biol. 2004 Oct 15;343(2):339-60. doi: 10.1016/j.jmb.2004.08.042.
9
Ionic effects on overstretching transition of B-DNA.
Eur Phys J E Soft Matter. 2005 Jun;17(2):231-5. doi: 10.1140/epje/i2004-10141-x. Epub 2005 May 27.
10
Anisotropy of fluctuation dynamics of proteins with an elastic network model.
Biophys J. 2001 Jan;80(1):505-15. doi: 10.1016/S0006-3495(01)76033-X.

引用本文的文献

1
Allostery through DNA drives phenotype switching.
Nat Commun. 2021 May 20;12(1):2967. doi: 10.1038/s41467-021-23148-2.
2
Direct monitoring of the stepwise condensation of kinetoplast DNA networks.
Sci Rep. 2021 Jan 15;11(1):1501. doi: 10.1038/s41598-021-81045-6.
3
Archaeal Chromatin Proteins Cren7 and Sul7d Compact DNA by Bending and Bridging.
mBio. 2020 Jun 9;11(3):e00804-20. doi: 10.1128/mBio.00804-20.
4
Specific minor groove solvation is a crucial determinant of DNA binding site recognition.
Nucleic Acids Res. 2014 Dec 16;42(22):14053-9. doi: 10.1093/nar/gku1259. Epub 2014 Nov 27.
5
Biophysics of protein-DNA interactions and chromosome organization.
Physica A. 2015 Jan 15;418:126-153. doi: 10.1016/j.physa.2014.07.045.
6
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3605-11. doi: 10.1073/pnas.1302950110. Epub 2013 Sep 3.
7
Probing allostery through DNA.
Science. 2013 Feb 15;339(6121):816-9. doi: 10.1126/science.1229223.
8
Range of interaction between DNA-bending proteins is controlled by the second-longest correlation length for bending fluctuations.
Phys Rev Lett. 2012 Dec 14;109(24):248301. doi: 10.1103/PhysRevLett.109.248301. Epub 2012 Dec 10.
9
On the role of DNA biomechanics in the regulation of gene expression.
J R Soc Interface. 2011 Dec 7;8(65):1673-81. doi: 10.1098/rsif.2011.0371. Epub 2011 Aug 24.
10
Tension-dependent structural deformation alters single-molecule transition kinetics.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1885-90. doi: 10.1073/pnas.1010047108. Epub 2011 Jan 18.

本文引用的文献

1
Driving proteins off DNA using applied tension.
Biophys J. 1997 Oct;73(4):2173-8. doi: 10.1016/S0006-3495(97)78248-1.
4
DNA: an extensible molecule.
Science. 1996 Feb 9;271(5250):792-4. doi: 10.1126/science.271.5250.792.
5
Intercalation, DNA kinking, and the control of transcription.
Science. 1996 Feb 9;271(5250):778-84. doi: 10.1126/science.271.5250.778.
6
The elasticity of a single supercoiled DNA molecule.
Science. 1996 Mar 29;271(5257):1835-7. doi: 10.1126/science.271.5257.1835.
7
Co-crystal structure of TBP recognizing the minor groove of a TATA element.
Nature. 1993 Oct 7;365(6446):520-7. doi: 10.1038/365520a0.
8
Entropic elasticity of lambda-phage DNA.
Science. 1994 Sep 9;265(5178):1599-600. doi: 10.1126/science.8079175.
9
Self-assembly of membrane junctions.
Biophys J. 1994 Aug;67(2):746-50. doi: 10.1016/S0006-3495(94)80535-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验