Suppr超能文献

DNA 弯曲蛋白相互作用范围受弯曲波动第二长相关长度控制。

Range of interaction between DNA-bending proteins is controlled by the second-longest correlation length for bending fluctuations.

机构信息

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Phys Rev Lett. 2012 Dec 14;109(24):248301. doi: 10.1103/PhysRevLett.109.248301. Epub 2012 Dec 10.

Abstract

When a DNA molecule is stretched, the zero-force correlation length for its bending fluctuations-the persistence length A-bifurcates into two different correlation lengths-the shorter "longitudinal" correlation length ξ_{∥}(f) and the longer "transverse" correlation length ξ_{⊥}(f). In the high-force limit, ξ_{∥}(f)=ξ_{⊥}(f)/2=sqrt[k_{B}TA/f]/2. When DNA-bending proteins bind to the DNA molecule, there is an effective interaction between the protein-generated bends mediated by DNA elasticity and bending fluctuations. Surprisingly, the range of this interaction is not the longest correlation length associated with transverse fluctuations of the tangent vector along the polymer, but instead is the second longest longitudinal correlation length ξ_{∥}(f,μ). The effect arises from the protein-bend contribution to the Hamiltonian having an axial rotational symmetry which eliminates its coupling to the transverse fluctuations.

摘要

当 DNA 分子被拉伸时,其弯曲波动的零力相关长度(持久长度)A 分叉成两个不同的相关长度 - 较短的“纵向”相关长度 ξ_{∥}(f) 和较长的“横向”相关长度 ξ_{⊥}(f)。在高力极限下,ξ_{∥}(f)=ξ_{⊥}(f)/2=sqrt[k_{B}TA/f]/2。当 DNA 弯曲蛋白结合到 DNA 分子上时,由 DNA 弹性和弯曲波动介导的蛋白产生的弯曲之间存在有效相互作用。令人惊讶的是,这种相互作用的范围不是与聚合物上切向量横向波动相关的最长相关长度,而是第二个最长的纵向相关长度 ξ_{∥}(f,μ)。这种效应源于蛋白质弯曲对哈密顿量的贡献具有轴向旋转对称性,从而消除了它与横向波动的耦合。

相似文献

1
Range of interaction between DNA-bending proteins is controlled by the second-longest correlation length for bending fluctuations.
Phys Rev Lett. 2012 Dec 14;109(24):248301. doi: 10.1103/PhysRevLett.109.248301. Epub 2012 Dec 10.
2
Intrinsic and force-generated cooperativity in a theory of DNA-bending proteins.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051906. doi: 10.1103/PhysRevE.82.051906. Epub 2010 Nov 3.
3
Model of DNA bending by cooperative binding of proteins.
Phys Rev Lett. 2008 Jul 18;101(3):038101. doi: 10.1103/PhysRevLett.101.038101. Epub 2008 Jul 14.
4
Dynamic bending rigidity of a 200-bp DNA in 4 mM ionic strength: a transient polarization grating study.
Biophys J. 2000 Mar;78(3):1498-518. doi: 10.1016/S0006-3495(00)76703-8.
5
The contribution of transient counterion imbalances to DNA bending fluctuations.
Biophys J. 2006 May 1;90(9):3208-15. doi: 10.1529/biophysj.105.078865. Epub 2006 Feb 3.
6
Determining protein-induced DNA bending in force-extension experiments: theoretical analysis.
Biophys J. 2009 May 6;96(9):3591-9. doi: 10.1016/j.bpj.2009.02.022.
7
Effects of DNA-distorting proteins on DNA elastic response.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011905. doi: 10.1103/PhysRevE.68.011905. Epub 2003 Jul 15.
8
Formation of loops in DNA under tension.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021911. doi: 10.1103/PhysRevE.71.021911. Epub 2005 Feb 24.
9
Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011913. doi: 10.1103/PhysRevE.77.011913. Epub 2008 Jan 22.
10
Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics.
Biophys J. 2015 Aug 4;109(3):618-29. doi: 10.1016/j.bpj.2015.06.054.

引用本文的文献

1
Theoretical Methods for Studying DNA Structural Transitions under Applied Mechanical Constraints.
Polymers (Basel). 2017 Feb 21;9(2):74. doi: 10.3390/polym9020074.
2
Transfer-matrix calculations of the effects of tension and torque constraints on DNA-protein interactions.
Nucleic Acids Res. 2018 Jul 27;46(13):6504-6527. doi: 10.1093/nar/gky478.
3
DNA-Segment-Facilitated Dissociation of Fis and NHP6A from DNA Detected via Single-Molecule Mechanical Response.
J Mol Biol. 2015 Sep 25;427(19):3123-36. doi: 10.1016/j.jmb.2015.07.015. Epub 2015 Jul 26.
4
Biophysics of protein-DNA interactions and chromosome organization.
Physica A. 2015 Jan 15;418:126-153. doi: 10.1016/j.physa.2014.07.045.

本文引用的文献

1
Force-driven unbinding of proteins HU and Fis from DNA quantified using a thermodynamic Maxwell relation.
Nucleic Acids Res. 2011 Jul;39(13):5568-77. doi: 10.1093/nar/gkr141. Epub 2011 Mar 22.
2
Intrinsic and force-generated cooperativity in a theory of DNA-bending proteins.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051906. doi: 10.1103/PhysRevE.82.051906. Epub 2010 Nov 3.
3
Biophysical characterization of DNA binding from single molecule force measurements.
Phys Life Rev. 2010 Sep;7(3):299-341. doi: 10.1016/j.plrev.2010.06.001. Epub 2010 Jun 4.
4
Single DNA/protein studies with magnetic traps.
Curr Opin Struct Biol. 2009 Oct;19(5):615-22. doi: 10.1016/j.sbi.2009.08.005. Epub 2009 Sep 23.
5
Twist- and tension-mediated elastic coupling between DNA-binding proteins.
Phys Rev Lett. 2009 May 1;102(17):178102. doi: 10.1103/PhysRevLett.102.178102. Epub 2009 Apr 30.
6
The organization of the bacterial genome.
Annu Rev Genet. 2008;42:211-33. doi: 10.1146/annurev.genet.42.110807.091653.
7
DNA-protein interactions and bacterial chromosome architecture.
Phys Biol. 2006 Dec 22;3(4):R1-10. doi: 10.1088/1478-3975/3/4/R01.
8
Statistics of loop formation along double helix DNAs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061905. doi: 10.1103/PhysRevE.71.061905. Epub 2005 Jun 13.
9
Dual architectural roles of HU: formation of flexible hinges and rigid filaments.
Proc Natl Acad Sci U S A. 2004 May 4;101(18):6969-74. doi: 10.1073/pnas.0308230101. Epub 2004 Apr 26.
10
Effects of DNA-distorting proteins on DNA elastic response.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011905. doi: 10.1103/PhysRevE.68.011905. Epub 2003 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验