Biomedical Engineering & Physics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
Phys Rev Lett. 2010 Nov 5;105(19):198302. doi: 10.1103/PhysRevLett.105.198302.
We describe a new method to measure the decorrelation rate of the optical coherence tomography (OCT) magnitude simultaneously in space and time. We measure the decorrelation rate of the OCT magnitude in a Fourier-domain OCT system for a large range of translational diffusion coefficients by varying the sphere diameter. The described method uses the sensitivity advantage of Fourier-domain OCT over time-domain OCT to increase the particle diffusion imaging speed by a factor of 200. By coherent gating, we reduce the contribution of multiple scattering to the detected signal, allowing a quantitative study of diffusive particle dynamics in high concentration samples. We demonstrate that this technique is well suited to image diffusive particle dynamics in samples with a complex geometry as we measure the morphology and diffusive particle dynamics simultaneously with both high spatial and high temporal resolution.
我们描述了一种新的方法来同时测量光学相干断层扫描(OCT)幅度的空间和时间去相关率。我们通过改变球体直径,在傅里叶域 OCT 系统中测量大范围平移扩散系数的 OCT 幅度去相关率。所描述的方法利用傅里叶域 OCT 相对于时域 OCT 的灵敏度优势,将粒子扩散成像速度提高了 200 倍。通过相干选通,我们减少了多次散射对检测信号的贡献,从而可以在高浓度样品中对扩散粒子动力学进行定量研究。我们证明,这种技术非常适合于对具有复杂几何形状的样品中的扩散粒子动力学进行成像,因为我们可以同时以高空间和高时间分辨率测量形貌和扩散粒子动力学。