Suppr超能文献

基于异质网络边缘化去噪模型的药物-靶标相互作用预测。

Drug-target interactions prediction using marginalized denoising model on heterogeneous networks.

机构信息

School of Computer Science and Engineering, South China University of Technology, Guangzhou, China.

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

出版信息

BMC Bioinformatics. 2020 Jul 23;21(1):330. doi: 10.1186/s12859-020-03662-8.

Abstract

BACKGROUND

Drugs achieve pharmacological functions by acting on target proteins. Identifying interactions between drugs and target proteins is an essential task in old drug repositioning and new drug discovery. To recommend new drug candidates and reposition existing drugs, computational approaches are commonly adopted. Compared with the wet-lab experiments, the computational approaches have lower cost for drug discovery and provides effective guidance in the subsequent experimental verification. How to integrate different types of biological data and handle the sparsity of drug-target interaction data are still great challenges.

RESULTS

In this paper, we propose a novel drug-target interactions (DTIs) prediction method incorporating marginalized denoising model on heterogeneous networks with association index kernel matrix and latent global association. The experimental results on benchmark datasets and new compiled datasets indicate that compared to other existing methods, our method achieves higher scores of AUC (area under curve of receiver operating characteristic) and larger values of AUPR (area under precision-recall curve).

CONCLUSIONS

The performance improvement in our method depends on the association index kernel matrix and the latent global association. The association index kernel matrix calculates the sharing relationship between drugs and targets. The latent global associations address the false positive issue caused by network link sparsity. Our method can provide a useful approach to recommend new drug candidates and reposition existing drugs.

摘要

背景

药物通过作用于靶蛋白来实现药理功能。鉴定药物与靶蛋白之间的相互作用是老药重定位和新药发现的重要任务。为了推荐新的候选药物和重新定位现有的药物,通常采用计算方法。与湿实验室实验相比,计算方法具有更低的药物发现成本,并为后续的实验验证提供有效的指导。如何整合不同类型的生物数据并处理药物-靶标相互作用数据的稀疏性仍然是巨大的挑战。

结果

在本文中,我们提出了一种新的药物-靶标相互作用(DTIs)预测方法,该方法结合了异质网络上的边缘化去噪模型、关联索引核矩阵和潜在全局关联。在基准数据集和新编译数据集上的实验结果表明,与其他现有方法相比,我们的方法在 AUC(接收者操作特征曲线下的面积)得分和 AUPR(精度-召回曲线下的面积)值方面都取得了更高的分数。

结论

我们方法的性能提升取决于关联索引核矩阵和潜在全局关联。关联索引核矩阵计算药物和靶标之间的共享关系。潜在全局关联解决了网络链接稀疏性引起的假阳性问题。我们的方法可以为推荐新的候选药物和重新定位现有的药物提供一种有用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5984/7653902/eba418b5a86a/12859_2020_3662_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验