Virology Therapeutics and Pharmacodynamics Laboratory, Center for Biodefense and Emerging Infections, Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, New York 12208, USA.
Antimicrob Agents Chemother. 2011 Apr;55(4):1747-53. doi: 10.1128/AAC.01629-10. Epub 2011 Jan 24.
Intravenous zanamivir is recommended for the treatment of hospitalized patients with complicated oseltamivir-resistant influenza virus infections. In a companion paper, we show that the time above the 50% effective concentration (time>EC(50)) is the pharmacodynamic (PD) index predicting the inhibition of viral replication by intravenous zanamivir. However, for other neuraminidase inhibitors, the ratio of the area under the concentration-time curve to the EC(50) (AUC/EC(50)) is the most predictive index. Our objectives are (i) to explain the dynamically linked variable of intravenous zanamivir by using different half-lives and (ii) to develop a new, mechanism-based population pharmacokinetic (PK)/PD model for the time course of viral load. We conducted dose fractionation studies in the hollow-fiber infection model (HFIM) system with zanamivir against an oseltamivir-resistant influenza virus. A clinical 2.5-h half-life and an artificially prolonged 8-h half-life were simulated for zanamivir. The values for the AUC from 0 to 24 h (AUC(0-24)) of zanamivir were equivalent for the two half-lives. Viral loads and zanamivir pharmacokinetics were comodeled using data from the present study and a previous dose range experiment via population PK/PD modeling in S-ADAPT. Dosing every 8 h (Q8h) suppressed the viral load better than dosing Q12h or Q24h at the 2.5-h half-life, whereas all regimens suppressed viral growth similarly at the 8-h half-life. The model provided unbiased and precise individual (Bayesian) (r(2), >0.96) and population (pre-Bayesian) (r(2), >0.87) fits for log(10) viral load. Zanamivir inhibited viral release (50% inhibitory concentration [IC(50)], 0.0168 mg/liter; maximum extent of inhibition, 0.990). We identified AUC/EC(50) as the pharmacodynamic index for zanamivir at the 8-h half-life, whereas time>EC(50) best predicted viral suppression at the 2.5-h half-life, since the trough concentrations approached the IC(50) for the 2.5-h but not for the 8-h half-life. The model explained data at both half-lives and holds promise for optimizing clinical zanamivir dosage regimens.
静脉扎那米韦被推荐用于治疗住院的伴有复杂奥司他韦耐药流感病毒感染的患者。在一篇相关的论文中,我们展示了超过半数有效浓度时间(time>EC(50))是预测静脉扎那米韦抑制病毒复制的药效动力学(PD)指标。然而,对于其他神经氨酸酶抑制剂来说,浓度-时间曲线下面积与半数有效浓度的比值(AUC/EC(50))是最有预测性的指标。我们的目标是(i)通过使用不同的半衰期来解释静脉扎那米韦的动态相关变量,以及(ii)开发一种新的、基于机制的群体药代动力学(PK)/药效动力学(PD)模型来描述病毒载量随时间的变化。我们在中空纤维感染模型(HFIM)系统中用扎那米韦进行了针对奥司他韦耐药流感病毒的剂量分割研究。模拟了扎那米韦临床 2.5 小时半衰期和人为延长的 8 小时半衰期。扎那米韦 0 至 24 小时(AUC(0-24))的 AUC 值在这两种半衰期下是等效的。通过使用来自本研究和先前剂量范围实验的数据,通过 S-ADAPT 中的群体 PK/PD 建模,对病毒载量和扎那米韦药代动力学进行了共模拟。在 2.5 小时半衰期时,每 8 小时(Q8h)给药比每 12 小时(Q12h)或 24 小时(Q24h)给药能更好地抑制病毒载量,而在 8 小时半衰期时,所有方案都能相似地抑制病毒生长。该模型为对数(10)病毒载量提供了无偏和精确的个体(贝叶斯)(r(2),>0.96)和群体(贝叶斯前)(r(2),>0.87)拟合。扎那米韦抑制病毒释放(50%抑制浓度[IC(50)],0.0168 毫克/升;最大抑制程度,0.990)。我们确定 AUC/EC(50)为 8 小时半衰期时扎那米韦的药效动力学指标,而 time>EC(50)则是 2.5 小时半衰期时预测病毒抑制的最佳指标,因为在 2.5 小时半衰期时,谷浓度接近 IC(50),而在 8 小时半衰期时则不然。该模型解释了两种半衰期的数据,有望优化临床扎那米韦剂量方案。