Suppr超能文献

全血通过微流控泵泵送。

Whole blood pumping with a microthrottle pump.

机构信息

School of Engineering and Technology, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, United Kingdom.

出版信息

Biomicrofluidics. 2010 Dec 23;4(4):44112. doi: 10.1063/1.3528327.

Abstract

We have previously reported that microthrottle pumps (MTPs) display the capacity to pump solid phase suspensions such as polystyrene beads which prove challenging to most microfluidic pumps. In this paper we report employing a linear microthrottle pump (LMTP) to pump whole, undiluted, anticoagulated, human venous blood at 200 μl min(-1) with minimal erythrocyte lysis and no observed pump blockage. LMTPs are particularly well suited to particle suspension transport by virtue of their relatively unimpeded internal flow-path. Micropumping of whole blood represents a rigorous real-world test of cell suspension transport given blood's high cell content by volume and erythrocytes' relative fragility. A modification of the standard Drabkin method and its validation to spectrophotometrically quantify low levels of erythrocyte lysis by hemoglobin release is also reported. Erythrocyte lysis rates resulting from transport via LMTP are determined to be below one cell in 500 at a pumping rate of 102 μl min(-1).

摘要

我们之前曾报道过,微节流泵(MTP)能够泵送固相悬浮液,如聚苯乙烯珠,这对大多数微流控泵来说极具挑战性。在本文中,我们报告了使用线性微节流泵(LMTP)以 200μl/min 的速度泵送完整、未稀释、抗凝的人静脉血,红细胞裂解最小,没有观察到泵阻塞。LMTP 特别适合于颗粒悬浮液的输送,因为它们具有相对通畅的内部流道。全血的微量泵送代表了对细胞悬浮液输送的严格的真实世界测试,因为血液的细胞含量高,红细胞相对脆弱。还报告了对标准 Drabkin 方法的修改及其验证,以通过血红蛋白释放分光光度法定量测定低水平的红细胞裂解。通过 LMTP 输送导致的红细胞裂解率在泵送速率为 102μl/min 时低于每 500 个细胞一个。

相似文献

1
Whole blood pumping with a microthrottle pump.
Biomicrofluidics. 2010 Dec 23;4(4):44112. doi: 10.1063/1.3528327.
2
Paper-based passive pumps to generate controllable whole blood flow through microfluidic devices.
Lab Chip. 2019 Nov 21;19(22):3787-3795. doi: 10.1039/c9lc00822e. Epub 2019 Oct 15.
4
Hand-powered microfluidics: A membrane pump with a patient-to-chip syringe interface.
Biomicrofluidics. 2012 Oct 19;6(4):44102. doi: 10.1063/1.4762851. eCollection 2012.
5
A passive and programmable 3D paper-based microfluidic pump for variable flow microfluidic applications.
Biomicrofluidics. 2022 Dec 16;16(6):064106. doi: 10.1063/5.0125937. eCollection 2022 Dec.
6
Paper pump for passive and programmable transport.
Biomicrofluidics. 2013 Feb 6;7(1):14107. doi: 10.1063/1.4790819. eCollection 2013.
7
[The significance of erythrocyte fragment count to predicting hemolysis in roller pumps].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Jun;25(3):632-6.
8
Trauma to erythrocytes induced by long term in vitro pumping using a roller pump.
Cell Biol Int. 2007 Aug;31(8):763-7. doi: 10.1016/j.cellbi.2007.01.030. Epub 2007 Jan 25.
10
Changes in red blood cell integrity related to infusion pumps: a comparison of three different pump mechanisms.
Pediatr Crit Care Med. 2003 Oct;4(4):465-70. doi: 10.1097/01.PCC.0000090292.39700.B5.

引用本文的文献

1
On-chip actuation transmitter for enhancing the dynamic response of cell manipulation using a macro-scale pump.
Biomicrofluidics. 2015 Feb 6;9(1):014114. doi: 10.1063/1.4907757. eCollection 2015 Jan.
3
Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100 °C.
Biomicrofluidics. 2013 May 21;7(3):34104. doi: 10.1063/1.4807463. eCollection 2013.
4
A hydrodynamic focusing microchannel based on micro-weir shear lift force.
Biomicrofluidics. 2012 Aug 6;6(3):34110. doi: 10.1063/1.4739073. Print 2012 Sep.
5
A "place n play" modular pump for portable microfluidic applications.
Biomicrofluidics. 2012 Mar;6(1):14118-1411816. doi: 10.1063/1.3692770. Epub 2012 Mar 9.
6
High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure.
Biomicrofluidics. 2012 Jun;6(2):24108-241089. doi: 10.1063/1.4704504. Epub 2012 Apr 13.

本文引用的文献

1
An air-bubble-actuated micropump for on-chip blood transportation.
Lab Chip. 2009 Jun 7;9(11):1524-33. doi: 10.1039/b900139e. Epub 2009 Apr 6.
2
Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel.
Biomed Microdevices. 2009 Oct;11(5):1021-7. doi: 10.1007/s10544-009-9319-3. Epub 2009 May 12.
3
Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
Lab Chip. 2009 May 7;9(9):1193-9. doi: 10.1039/b817611f. Epub 2009 Feb 13.
4
Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel.
J Biomech. 2009 May 11;42(7):838-43. doi: 10.1016/j.jbiomech.2009.01.026. Epub 2009 Mar 6.
5
Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
Lab Chip. 2008 Jul;8(7):1062-70. doi: 10.1039/b802931h. Epub 2008 Jun 5.
6
On-chip erythrocyte deformability test under optical pressure.
Lab Chip. 2007 Apr;7(4):516-9. doi: 10.1039/b614912j. Epub 2007 Feb 1.
7
An integrated micromachined electrochemical pump and dosing system.
Biomed Microdevices. 1999;1(2):121-30. doi: 10.1023/A:1009996407848.
9
Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane).
Langmuir. 2004 Dec 21;20(26):11684-91. doi: 10.1021/la048562+.
10
Elastomer-glass micropump employing active throttles.
Analyst. 2004 Sep;129(9):829-34. doi: 10.1039/b407760c. Epub 2004 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验