Division of Neurobiology, Medical Research Council, Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
J Neurosci. 2011 Jan 26;31(4):1539-44. doi: 10.1523/JNEUROSCI.4107-10.2011.
Circadian pacemaking in the suprachiasmatic nucleus (SCN) revolves around a transcriptional/posttranslational feedback loop in which period (Per) and cryptochrome (Cry) genes are negatively regulated by their protein products. Genetically specified differences in this oscillator underlie sleep and metabolic disorders, and dictate diurnal/nocturnal preference. A critical goal, therefore, is to identify mechanisms that generate circadian phenotypic diversity, through both single gene effects and gene interactions. The individual stabilities of PER or CRY proteins determine pacemaker period, and PER/CRY complexes have been proposed to afford mutual stabilization, although how PER and CRY proteins with contrasting stabilities interact is unknown. We therefore examined interactions between two mutations in male mice: Fbxl3(Afh), which lengthens period by stabilizing CRY, and Csnk1ε(tm1Asil) (CK1ε(Tau)), which destabilizes PER, thereby accelerating the clock. By intercrossing these mutants, we show that the stabilities of CRY and PER are independently regulated, contrary to the expectation of mutual stabilization. Segregation of wild-type and mutant alleles generated a spectrum of periods for rest-activity behavior and SCN bioluminescence rhythms. The mutations exerted independent, additive effects on circadian period, biased toward shorter periods determined by CK1ε(Tau). Notably, Fbxl3(Afh) extended the duration of the nadir of the PER2-driven bioluminescence rhythm but CK1ε(Tau) reversed this, indicating that despite maintained CRY expression, CK1ε(Tau) truncated the interval of negative feedback. These results argue for independent, additive biochemical actions of PER and CRY in circadian control, and complement genome-wide epistatic analyses, seeking to decipher the multigenic control of circadian pacemaking.
生物钟在视交叉上核(SCN)的起搏作用围绕着一个转录/翻译后反馈环,其中周期(Per)和隐色素(Cry)基因受其蛋白产物的负调控。该振荡器中的遗传特异性差异是睡眠和代谢紊乱的基础,并决定了昼夜节律/夜间偏好。因此,一个关键目标是通过单基因效应和基因相互作用来确定产生生物钟表型多样性的机制。PER 或 CRY 蛋白的个体稳定性决定了起搏器的周期,并且已经提出 PER/CRY 复合物提供相互稳定,尽管具有相反稳定性的 PER 和 CRY 蛋白如何相互作用尚不清楚。因此,我们在雄性小鼠中检查了两个突变之间的相互作用:延长周期的 Fbxl3(Afh) 通过稳定 CRY,以及使 PER 不稳定的 Csnk1ε(tm1Asil) (CK1ε(Tau)),从而加速时钟。通过这些突变体的杂交,我们表明 CRY 和 PER 的稳定性是独立调节的,这与相互稳定的预期相反。野生型和突变型等位基因的分离产生了休息-活动行为和 SCN 生物发光节律的周期谱。这些突变对生物钟周期具有独立的、累加的影响,偏向于由 CK1ε(Tau) 决定的较短周期。值得注意的是,Fbxl3(Afh) 延长了 PER2 驱动的生物发光节律的最低点持续时间,但 CK1ε(Tau) 逆转了这一点,表明尽管 CRY 表达保持不变,CK1ε(Tau) 缩短了负反馈的间隔。这些结果表明 PER 和 CRY 在生物钟控制中具有独立的、累加的生化作用,并补充了全基因组上位性分析,旨在破译生物钟起搏的多基因控制。