Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany; International Max Planck Research School-Computational Biology and Scientific Computing, Berlin, Germany.
Institute of Computational Science, University of Lugano, Lugano, Switzerland; Deutsche Forschungsgemeinschaft Research Center MATHEON, Berlin, Germany.
Biophys J. 2011 Feb 2;100(3):701-710. doi: 10.1016/j.bpj.2010.12.3699.
Protein-ligand interactions are essential for nearly all biological processes, and yet the biophysical mechanism that enables potential binding partners to associate before specific binding occurs remains poorly understood. Fundamental questions include which factors influence the formation of protein-ligand encounter complexes, and whether designated association pathways exist. To address these questions, we developed a computational approach to systematically analyze the complete ensemble of association pathways. Here, we use this approach to study the binding of a phosphate ion to the Escherichia coli phosphate-binding protein. Various mutants of the protein are considered, and their effects on binding free-energy profiles, association rates, and association pathway distributions are quantified. The results reveal the existence of two anion attractors, i.e., regions that initially attract negatively charged particles and allow them to be efficiently screened for phosphate, which is subsequently specifically bound. Point mutations that affect the charge on these attractors modulate their attraction strength and speed up association to a factor of 10 of the diffusion limit, and thus change the association pathways of the phosphate ligand. It is demonstrated that a phosphate that prebinds to such an attractor neutralizes its attraction effect to the environment, making the simultaneous association of a second phosphate ion unlikely. This study suggests ways in which structural properties can be used to tune molecular association kinetics so as to optimize the efficiency of binding, and highlights the importance of kinetic properties.
蛋白质-配体相互作用对于几乎所有的生物过程都是至关重要的,但对于能够使潜在结合伴侣在特定结合发生之前结合的生物物理机制,我们仍然知之甚少。基本问题包括哪些因素影响蛋白质-配体遭遇复合物的形成,以及是否存在指定的结合途径。为了解决这些问题,我们开发了一种计算方法来系统地分析所有可能的结合途径。在这里,我们使用这种方法来研究磷酸离子与大肠杆菌磷酸结合蛋白的结合。考虑了该蛋白的各种突变体,并对其对结合自由能谱、结合速率和结合途径分布的影响进行了量化。结果揭示了两种阴离子吸引子的存在,即最初吸引带负电荷粒子并允许它们有效地筛选磷酸的区域,随后磷酸被特异性结合。影响这些吸引子上电荷的点突变会调节它们的吸引力强度,并将结合速率提高到扩散限制的 10 倍,从而改变磷酸配体的结合途径。研究表明,预先结合到这种吸引子上的磷酸会使其对环境的吸引力失效,从而使第二个磷酸离子同时结合的可能性降低。这项研究表明,如何利用结构特性来调整分子结合动力学,以优化结合效率,并强调了动力学性质的重要性。