Suppr超能文献

蛋白质-配体结合的机制及其通过蛋白质突变的调节。

Mechanisms of protein-ligand association and its modulation by protein mutations.

机构信息

Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany; International Max Planck Research School-Computational Biology and Scientific Computing, Berlin, Germany.

Institute of Computational Science, University of Lugano, Lugano, Switzerland; Deutsche Forschungsgemeinschaft Research Center MATHEON, Berlin, Germany.

出版信息

Biophys J. 2011 Feb 2;100(3):701-710. doi: 10.1016/j.bpj.2010.12.3699.

Abstract

Protein-ligand interactions are essential for nearly all biological processes, and yet the biophysical mechanism that enables potential binding partners to associate before specific binding occurs remains poorly understood. Fundamental questions include which factors influence the formation of protein-ligand encounter complexes, and whether designated association pathways exist. To address these questions, we developed a computational approach to systematically analyze the complete ensemble of association pathways. Here, we use this approach to study the binding of a phosphate ion to the Escherichia coli phosphate-binding protein. Various mutants of the protein are considered, and their effects on binding free-energy profiles, association rates, and association pathway distributions are quantified. The results reveal the existence of two anion attractors, i.e., regions that initially attract negatively charged particles and allow them to be efficiently screened for phosphate, which is subsequently specifically bound. Point mutations that affect the charge on these attractors modulate their attraction strength and speed up association to a factor of 10 of the diffusion limit, and thus change the association pathways of the phosphate ligand. It is demonstrated that a phosphate that prebinds to such an attractor neutralizes its attraction effect to the environment, making the simultaneous association of a second phosphate ion unlikely. This study suggests ways in which structural properties can be used to tune molecular association kinetics so as to optimize the efficiency of binding, and highlights the importance of kinetic properties.

摘要

蛋白质-配体相互作用对于几乎所有的生物过程都是至关重要的,但对于能够使潜在结合伴侣在特定结合发生之前结合的生物物理机制,我们仍然知之甚少。基本问题包括哪些因素影响蛋白质-配体遭遇复合物的形成,以及是否存在指定的结合途径。为了解决这些问题,我们开发了一种计算方法来系统地分析所有可能的结合途径。在这里,我们使用这种方法来研究磷酸离子与大肠杆菌磷酸结合蛋白的结合。考虑了该蛋白的各种突变体,并对其对结合自由能谱、结合速率和结合途径分布的影响进行了量化。结果揭示了两种阴离子吸引子的存在,即最初吸引带负电荷粒子并允许它们有效地筛选磷酸的区域,随后磷酸被特异性结合。影响这些吸引子上电荷的点突变会调节它们的吸引力强度,并将结合速率提高到扩散限制的 10 倍,从而改变磷酸配体的结合途径。研究表明,预先结合到这种吸引子上的磷酸会使其对环境的吸引力失效,从而使第二个磷酸离子同时结合的可能性降低。这项研究表明,如何利用结构特性来调整分子结合动力学,以优化结合效率,并强调了动力学性质的重要性。

相似文献

1
Mechanisms of protein-ligand association and its modulation by protein mutations.
Biophys J. 2011 Feb 2;100(3):701-710. doi: 10.1016/j.bpj.2010.12.3699.
3
DING proteins; novel members of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom.
Int J Biochem Cell Biol. 2008;40(2):170-5. doi: 10.1016/j.biocel.2007.02.004. Epub 2007 Feb 12.
4
Stable polyphosphate accumulation by a pseudo-revertant of an Escherichia coli phoU mutant.
Biotechnol Lett. 2013 May;35(5):695-701. doi: 10.1007/s10529-012-1133-y. Epub 2013 Jan 4.
6
7
Elucidating the Phosphate Binding Mode of Phosphate-Binding Protein: The Critical Effect of Buffer Solution.
J Phys Chem B. 2018 Jun 21;122(24):6371-6376. doi: 10.1021/acs.jpcb.8b03194. Epub 2018 Jun 11.
9
Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5'-phosphate-binding protein YggS.
J Biosci Bioeng. 2016 Dec;122(6):689-693. doi: 10.1016/j.jbiosc.2016.06.010. Epub 2016 Jul 12.
10
The human mitochondrial single-stranded DNA-binding protein displays distinct kinetics and thermodynamics of DNA binding and exchange.
J Biol Chem. 2017 Aug 4;292(31):13068-13084. doi: 10.1074/jbc.M117.791392. Epub 2017 Jun 14.

引用本文的文献

2
Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling.
J Chem Theory Comput. 2025 May 13;21(9):4921-4938. doi: 10.1021/acs.jctc.5c00196. Epub 2025 Apr 27.
3
Decoding the effects of mutation on protein interactions using machine learning.
Biophys Rev (Melville). 2025 Feb 21;6(1):011307. doi: 10.1063/5.0249920. eCollection 2025 Mar.
4
Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling.
bioRxiv. 2025 Jan 21:2025.01.16.633411. doi: 10.1101/2025.01.16.633411.
5
Identification of a Cryptic Pocket in Methionine Aminopeptidase-II Using Adaptive Bandit Molecular Dynamics Simulations and Markov State Models.
ACS Omega. 2024 Jun 18;9(26):28534-28545. doi: 10.1021/acsomega.4c02516. eCollection 2024 Jul 2.
6
Dynamics of receptor activation by agonists.
Biophys J. 2024 Jul 16;123(14):1915-1923. doi: 10.1016/j.bpj.2024.01.003. Epub 2024 Jan 4.
7
Diffusion-Controlled Reactions: An Overview.
Molecules. 2023 Nov 13;28(22):7570. doi: 10.3390/molecules28227570.
8
Agonist efficiency links binding and gating in a nicotinic receptor.
Elife. 2023 Jul 3;12:e86496. doi: 10.7554/eLife.86496.
9
Homology Modeling, Design of Ligands, and Molecular Docking Identify Potential Inhibitors of 24-Sterol Methyltransferase.
Front Cell Infect Microbiol. 2022 Jun 2;12:859981. doi: 10.3389/fcimb.2022.859981. eCollection 2022.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Markov models of molecular kinetics: generation and validation.
J Chem Phys. 2011 May 7;134(17):174105. doi: 10.1063/1.3565032.
3
Induced fit, conformational selection and independent dynamic segments: an extended view of binding events.
Trends Biochem Sci. 2010 Oct;35(10):539-46. doi: 10.1016/j.tibs.2010.04.009. Epub 2010 Jun 11.
4
Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm.
PLoS Comput Biol. 2010 Mar 5;6(3):e1000694. doi: 10.1371/journal.pcbi.1000694.
5
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19011-6. doi: 10.1073/pnas.0905466106. Epub 2009 Nov 3.
7
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions.
Phys Biol. 2009 Aug 21;6(4):046001. doi: 10.1088/1478-3975/6/4/046001.
8
An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations.
J Chem Phys. 2009 Mar 21;130(11):114905. doi: 10.1063/1.3089668.
9
Dynamics of protein-protein encounter: a Langevin equation approach with reaction patches.
J Chem Phys. 2008 Oct 21;129(15):155106. doi: 10.1063/1.2996082.
10
Probability distributions of molecular observables computed from Markov models.
J Chem Phys. 2008 Jun 28;128(24):244103. doi: 10.1063/1.2916718.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验