Suppr超能文献

大肠杆菌氨同化网络通量平衡分析预测了首选调控点。

Flux balance analysis of ammonia assimilation network in E. coli predicts preferred regulation point.

机构信息

School of Physics, Peking University, Beijing, China.

出版信息

PLoS One. 2011 Jan 25;6(1):e16362. doi: 10.1371/journal.pone.0016362.

Abstract

Nitrogen assimilation is a critical biological process for the synthesis of biomolecules in Escherichia coli. The central ammonium assimilation network in E. coli converts carbon skeleton α-ketoglutarate and ammonium into glutamate and glutamine, which further serve as nitrogen donors for nitrogen metabolism in the cell. This reaction network involves three enzymes: glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT). In minimal media, E. coli tries to maintain an optimal growth rate by regulating the activity of the enzymes to match the availability of the external ammonia. The molecular mechanism and the strategy of the regulation in this network have been the research topics for many investigators. In this paper, we develop a flux balance model for the nitrogen metabolism, taking into account of the cellular composition and biosynthetic requirements for nitrogen. The model agrees well with known experimental results. Specifically, it reproduces all the (15)N isotope labeling experiments in the wild type and the two mutant (ΔGDH and ΔGOGAT) strains of E. coli. Furthermore, the predicted catalytic activities of GDH, GS and GOGAT in different ammonium concentrations and growth rates for the wild type, ΔGDH and ΔGOGAT strains agree well with the enzyme concentrations obtained from western blots. Based on this flux balance model, we show that GS is the preferred regulation point among the three enzymes in the nitrogen assimilation network. Our analysis reveals the pattern of regulation in this central and highly regulated network, thus providing insights into the regulation strategy adopted by the bacteria. Our model and methods may also be useful in future investigations in this and other networks.

摘要

氮同化是大肠杆菌中生物分子合成的关键生物学过程。大肠杆菌中中心的铵同化网络将碳骨架α-酮戊二酸和铵转化为谷氨酸和谷氨酰胺,它们进一步作为细胞内氮代谢的氮供体。该反应网络涉及三种酶:谷氨酸脱氢酶(GDH)、谷氨酰胺合成酶(GS)和谷氨酸合酶(GOGAT)。在最低培养基中,大肠杆菌通过调节酶的活性使其与外部氨的可用性相匹配,从而尝试维持最佳的生长速率。该网络中的分子机制和调节策略一直是许多研究人员的研究课题。在本文中,我们开发了一个氮代谢的通量平衡模型,考虑了细胞组成和氮的生物合成需求。该模型与已知的实验结果吻合良好。具体来说,它再现了野生型和大肠杆菌的两种突变株(ΔGDH 和 ΔGOGAT)的所有(15)N 同位素标记实验。此外,在不同铵浓度和生长速率下,GDH、GS 和 GOGAT 的预测催化活性与从 Western blot 获得的酶浓度非常吻合。基于这个通量平衡模型,我们表明 GS 是氮同化网络中三种酶的首选调节点。我们的分析揭示了这个中央和高度调节网络中的调节模式,从而为细菌采用的调节策略提供了深入的了解。我们的模型和方法也可能对未来在这个和其他网络中的研究有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f507/3026816/fa2f3ce9e294/pone.0016362.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验