Division of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.
Bioinformatics. 2011 Apr 1;27(7):1023-5. doi: 10.1093/bioinformatics/btr041. Epub 2011 Feb 3.
We propose a three-step periodicity detection algorithm named LSPR. Our method first preprocesses the raw time-series by removing the linear trend and filtering noise. In the second step, LSPR employs a Lomb-Scargle periodogram to estimate the periodicity in the time-series. Finally, harmonic regression is applied to model the cyclic components. Inferred periodic transcripts are selected by a false discovery rate procedure. We have applied LSPR to unevenly sampled synthetic data and two Arabidopsis diurnal expression datasets, and compared its performance with the existing well-established algorithms. Results show that LSPR is capable of identifying periodic transcripts more accurately than existing algorithms.
LSPR algorithm is implemented as MATLAB software and is available at http://bioinformatics.cau.edu.cn/LSPR.
我们提出了一种名为 LSPR 的三步周期性检测算法。我们的方法首先通过去除线性趋势和平滑噪声来预处理原始时间序列。在第二步中,LSPR 使用 Lomb-Scargle 周期图来估计时间序列中的周期性。最后,应用谐波回归来对循环分量进行建模。通过错误发现率过程选择推断的周期性转录本。我们已经将 LSPR 应用于不均匀采样的合成数据和两个拟南芥昼夜表达数据集,并将其性能与现有的成熟算法进行了比较。结果表明,LSPR 能够比现有算法更准确地识别周期性转录本。
LSPR 算法实现为 MATLAB 软件,并可在 http://bioinformatics.cau.edu.cn/LSPR 上获得。