Klein Marlise I, Xiao Jin, Heydorn Arne, Koo Hyun
Center for Oral Biology, University of Rochester Medical Center.
J Vis Exp. 2011 Jan 25(47):2512. doi: 10.3791/2512.
Biofilms are highly dynamic, organized and structured communities of microbial cells enmeshed in an extracellular matrix of variable density and composition (1, 2). In general, biofilms develop from initial microbial attachment on a surface followed by formation of cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which occur in a complex extracellular matrix. The majority of biofilm matrices harbor exopolysaccharides (EPS), and dental biofilms are no exception; especially those associated with caries disease, which are mostly mediated by mutans streptococci (3). The EPS are synthesized by microorganisms (S. mutans, a key contributor) by means of extracellular enzymes, such as glucosyltransferases using sucrose primarily as substrate (3). Studies of biofilms formed on tooth surfaces are particularly challenging owing to their constant exposure to environmental challenges associated with complex diet-host-microbial interactions occurring in the oral cavity. Better understanding of the dynamic changes of the structural organization and composition of the matrix, physiology and transcriptome/proteome profile of biofilm-cells in response to these complex interactions would further advance the current knowledge of how oral biofilms modulate pathogenicity. Therefore, we have developed an analytical tool-box to facilitate biofilm analysis at structural, biochemical and molecular levels by combining commonly available and novel techniques with custom-made software for data analysis. Standard analytical (colorimetric assays, RT-qPCR and microarrays) and novel fluorescence techniques (for simultaneous labeling of bacteria and EPS) were integrated with specific software for data analysis to address the complex nature of oral biofilm research. The tool-box is comprised of 4 distinct but interconnected steps (Figure 1): 1) Bioassays, 2) Raw Data Input, 3) Data Processing, and 4) Data Analysis. We used our in vitro biofilm model and specific experimental conditions to demonstrate the usefulness and flexibility of the tool-box. The biofilm model is simple, reproducible and multiple replicates of a single experiment can be done simultaneously (4, 5). Moreover, it allows temporal evaluation, inclusion of various microbial species (5) and assessment of the effects of distinct experimental conditions (e.g. treatments (6); comparison of knockout mutants vs. parental strain (5); carbohydrates availability (7)). Here, we describe two specific components of the tool-box, including (i) new software for microarray data mining/organization (MDV) and fluorescence imaging analysis (DUOSTAT), and (ii) in situ EPS-labeling. We also provide an experimental case showing how the tool-box can assist with biofilms analysis, data organization, integration and interpretation.
生物膜是由微生物细胞组成的高度动态、有组织且结构化的群落,这些细胞被包裹在密度和组成各异的细胞外基质中(1, 2)。一般来说,生物膜从微生物最初附着在表面开始形成,随后形成细胞簇(或微菌落),微菌落在复杂的细胞外基质中进一步发育并稳定下来。大多数生物膜基质含有胞外多糖(EPS),牙菌斑生物膜也不例外;特别是那些与龋齿疾病相关的生物膜,主要由变形链球菌介导(3)。EPS是由微生物(变形链球菌是主要贡献者)通过胞外酶合成的,例如主要以蔗糖为底物的葡糖基转移酶(3)。研究在牙齿表面形成的生物膜尤其具有挑战性,因为它们不断受到与口腔中复杂的饮食 - 宿主 - 微生物相互作用相关的环境挑战。更好地了解基质的结构组织和组成、生物膜细胞的生理学以及转录组/蛋白质组谱在这些复杂相互作用下的动态变化,将进一步推动我们目前对口腔生物膜如何调节致病性的认识。因此,我们开发了一个分析工具箱,通过将常用技术和新技术与定制的数据分析软件相结合,在结构、生化和分子水平上促进生物膜分析。标准分析方法(比色法、逆转录定量聚合酶链反应和微阵列)和新型荧光技术(用于同时标记细菌和EPS)与特定的数据分析软件集成在一起,以应对口腔生物膜研究的复杂性。该工具箱由4个不同但相互关联的步骤组成(图1):1)生物测定,2)原始数据输入,3)数据处理,4)数据分析。我们使用体外生物膜模型和特定的实验条件来证明该工具箱的实用性和灵活性。该生物膜模型简单、可重复,并且可以同时进行单个实验的多个重复(4, 5)。此外,它允许进行时间评估,纳入各种微生物物种(5),并评估不同实验条件的影响(例如处理(6);敲除突变体与亲本菌株的比较(5);碳水化合物可用性(7))。在这里,我们描述了该工具箱的两个特定组件,包括(i)用于微阵列数据挖掘/组织(MDV)和荧光成像分析(DUOSTAT)的新软件,以及(ii)原位EPS标记。我们还提供了一个实验案例,展示了该工具箱如何协助生物膜分析、数据组织、整合和解释。