Suppr超能文献

连二亚硫酸钠这种非生理还原剂与 [FeFe]氢化酶:对酶机制的影响。

The Nonphysiological Reductant Sodium Dithionite and [FeFe] Hydrogenase: Influence on the Enzyme Mechanism.

机构信息

Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.

Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, U.K.

出版信息

J Am Chem Soc. 2021 Nov 3;143(43):18159-18171. doi: 10.1021/jacs.1c07322. Epub 2021 Oct 20.

Abstract

[FeFe] hydrogenases are highly active enzymes for interconverting protons and electrons with hydrogen (H). Their active site H-cluster is formed of a canonical [4Fe-4S] cluster ([4Fe-4S]) covalently attached to a unique [2Fe] subcluster ([2Fe]), where both sites are redox active. Heterolytic splitting and formation of H takes place at [2Fe], while [4Fe-4S] stores electrons. The detailed catalytic mechanism of these enzymes is under intense investigation, with two dominant models existing in the literature. In one model, an alternative form of the active oxidized state H, named HH, which forms at low pH in the presence of the nonphysiological reductant sodium dithionite (NaDT), is believed to play a crucial role. HH was previously suggested to have a protonated [4Fe-4S]. Here, we show that HH forms by simple addition of sodium sulfite (NaSO, the dominant oxidation product of NaDT) at low pH. The low pH requirement indicates that sulfur dioxide (SO) is the species involved. Spectroscopy supports binding at or near [4Fe-4S], causing its redox potential to increase by ∼60 mV. This potential shift detunes the redox potentials of the subclusters of the H-cluster, lowering activity, as shown in protein film electrochemistry (PFE). Together, these results indicate that HH and its one-electron reduced counterpart H'H are artifacts of using a nonphysiological reductant, and not crucial catalytic intermediates. We propose renaming these states as the "dithionite (DT) inhibited" states H-DT and H-DT. The broader potential implications of using a nonphysiological reductant in spectroscopic and mechanistic studies of enzymes are highlighted.

摘要

[FeFe]氢化酶是一种高效的酶,可将质子和电子与氢气(H)相互转化。其活性位点 H 簇由一个经典的 [4Fe-4S]簇 ([4Fe-4S])与一个独特的 [2Fe]亚簇 ([2Fe])共价连接而成,这两个位点都是氧化还原活性的。H 的异裂和形成发生在 [2Fe]上,而 [4Fe-4S]存储电子。这些酶的详细催化机制正在深入研究中,文献中有两种主要的模型存在。在一种模型中,活性氧化态 H 的一种替代形式 HH,在存在非生理还原剂连二亚硫酸钠(NaDT)的情况下,在低 pH 下形成,被认为起着至关重要的作用。HH 以前被认为具有质子化的 [4Fe-4S]。在这里,我们表明 HH 通过在低 pH 下简单地添加亚硫酸钠(NaSO,NaDT 的主要氧化产物)形成。低 pH 的要求表明,二氧化硫(SO)是参与的物种。光谱学支持在 [4Fe-4S]附近或结合,导致其氧化还原电位增加约 60 mV。这种电位偏移使 H 簇的亚簇的氧化还原电位失谐,降低了活性,如在蛋白质膜电化学(PFE)中所示。这些结果表明,HH 和其单电子还原产物 H'H 是使用非生理还原剂的人工制品,而不是关键的催化中间体。我们建议将这些状态重新命名为“连二亚硫酸盐(DT)抑制”状态 H-DT 和 H-DT。在酶的光谱学和机制研究中使用非生理还原剂的更广泛的潜在影响被强调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8860/8569811/6608acaaa624/ja1c07322_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验