Stichternoth Catrin, Fraund Alida, Setiadi Eleonora, Giasson Luc, Vecchiarelli Anna, Ernst Joachim F
Institut für Mikrobiologie, Molekulare Mykologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr, Düsseldorf, Germany.
Eukaryot Cell. 2011 Apr;10(4):502-11. doi: 10.1128/EC.00289-10. Epub 2011 Feb 18.
The yeast-hypha transition is an important virulence trait of Candida albicans. We report that the AGC kinase Sch9 prevents hypha formation specifically under hypoxia at high CO(2) levels. sch9 mutants showed no major defects in growth and stress resistance but a striking hyperfilamentous phenotype under hypoxia (<10% O(2)), although only in the presence of elevated CO(2) levels (>1%) and at temperatures of <37°C during surface growth. The sch9 hyperfilamentous phenotype was independent of Rim15 kinase and was recreated by inhibition of Tor1 kinase by rapamycin or caffeine in a wild-type strain, suggesting that Sch9 suppression requires Tor1. Caffeine inhibition also revealed that both protein kinase A isoforms, as well as transcription factors Czf1 and Ace2, are required to generate the sch9 mutant phenotype. Transcriptomal analyses showed that Sch9 regulates most genes solely under hypoxia and in the presence of elevated CO(2). In this environment, Sch9 downregulates genes encoding cell wall proteins and nutrient transporters, while under normoxia Sch9 and Tor1 coregulate a minor fraction of Sch9-regulated genes, e.g., by inducing glycolytic genes. Other than in Saccharomyces cerevisiae, both sch9 and rim15 mutants showed decreased chronological aging under normoxia but not under hypoxia, indicating significant rewiring of the Tor1-Sch9-Rim15 pathway in C. albicans. The results stress the importance of environmental conditions on Sch9 function and establish a novel response circuitry to both hypoxia and CO(2) in C. albicans, which suppresses hypha formation but also allows efficient nutrient uptake, metabolism, and virulence.
酵母-菌丝转变是白色念珠菌的一种重要毒力特征。我们报告称,AGC激酶Sch9在高二氧化碳水平下的低氧环境中特异性地阻止菌丝形成。sch9突变体在生长和抗逆性方面没有重大缺陷,但在低氧(<10% O₂)条件下表现出显著的超丝状表型,不过仅在二氧化碳水平升高(>1%)且表面生长温度<37°C时出现。sch9超丝状表型独立于Rim15激酶,并且通过雷帕霉素或咖啡因抑制野生型菌株中的Tor1激酶可重现该表型,这表明Sch9的抑制作用需要Tor1。咖啡因抑制还表明,两种蛋白激酶A同工型以及转录因子Czf1和Ace2对于产生sch9突变体表型都是必需的。转录组分析表明,Sch9仅在低氧和二氧化碳水平升高的情况下调节大多数基因。在这种环境中,Sch9下调编码细胞壁蛋白和营养转运蛋白的基因,而在常氧条件下,Sch9和Tor1共同调节一小部分受Sch9调节的基因,例如通过诱导糖酵解基因。与酿酒酵母不同,sch9和rim15突变体在常氧条件下的时序老化减少,但在低氧条件下没有,这表明白色念珠菌中Tor1-Sch9-Rim15途径发生了显著的重新布线。结果强调了环境条件对Sch9功能的重要性,并在白色念珠菌中建立了一种对低氧和二氧化碳的新型应答电路,该电路抑制菌丝形成,但也允许有效的营养吸收、代谢和毒力。