Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.
Inorg Chem. 2011 Mar 21;50(6):2606-12. doi: 10.1021/ic102449m. Epub 2011 Feb 21.
In the exploration of sulfur-delivery reagents useful for synthesizing models of the tetracopper-sulfide cluster of nitrous oxide reductase, reactions of Ph(3)Sb═S with Cu(I) complexes of N,N,N',N'-tetramethyl-2R,3R-cyclohexanediamine (TMCHD) and 1,4,7-trialkyltriazacyclononanes (R(3)tacn; R = Me, Et, iPr) were studied. Treatment of [(R(3)tacn)Cu(NCCH(3))]SbF(6) (R = Me, Et, or iPr) with 1 equiv of S═SbPh(3) in CH(2)Cl(2) yielded adducts [(R(3)tacn)Cu(S═SbPh(3))]SbF(6) (1-3), which were fully characterized, including by X-ray crystallography. The adducts slowly decayed to (R(3)tacn)(2)Cu(2)(μ-η(2):η(2)-S(2)) species (4-6) and SbPh(3), or more quickly in the presence of additional [(R(3)tacn)Cu(NCCH(3))]SbF(6) to 4-6 and [(R(3)tacn)Cu(SbPh(3))]SbF(6) (7-9). The results of mechanistic studies of the latter process were consistent with rapid intermolecular exchange of S═SbPh(3) between 1-3 and added [(R(3)tacn)Cu(NCCH(3))]SbF(6), followed by conversion to product via a dicopper intermediate formed in a rapid pre-equilibrium step. Key evidence supporting this step came from the observation of saturation behavior in a plot of the initial rate of loss of 1 versus the initial concentration of [(Me(3)tacn)Cu(NCCH(3))]SbF(6). Also, treatment of [(TMCHD)Cu(CH(3)CN)]PF(6) with S═SbPh(3) led to the known tricopper cluster (TMCHD)(3)Cu(3)(μ(3)-S)(2)(3) in good yield (79%), a synthetic procedure superior to that previously reported (Brown, E. C.; York, J. T.; Antholine, W. E.; Ruiz, E.; Alvarez, S.; Tolman, W. B. J. Am. Chem. Soc. 2005, 127, 13752-13753).
在探索用于合成亚硝氧化物还原酶的四硫化铜簇模型的硫供体试剂时,研究了 Ph(3)Sb═S 与 Cu(I) 配合物 N,N,N',N'-四甲基-2R,3R-环己二胺 (TMCHD) 和 1,4,7-三烷基三嗪环壬烷 (R(3)tacn;R = Me、Et、iPr) 的反应。用 1 当量的 S═SbPh(3)处理 [(R(3)tacn)Cu(NCCH(3))]SbF(6) (R = Me、Et 或 iPr),在 CH(2)Cl(2)中生成配合物 [(R(3)tacn)Cu(S═SbPh(3))]SbF(6) (1-3),这些配合物通过 X 射线晶体学得到了充分的表征。这些配合物缓慢分解为 (R(3)tacn)(2)Cu(2)(μ-η(2):η(2)-S(2)) 物种 (4-6) 和 SbPh(3),或者在存在额外的 [(R(3)tacn)Cu(NCCH(3))]SbF(6)时更快地分解为 4-6 和 [(R(3)tacn)Cu(SbPh(3))]SbF(6) (7-9)。对后一过程的机理研究结果表明,S═SbPh(3)在 1-3 和加入的 [(R(3)tacn)Cu(NCCH(3))]SbF(6)之间快速进行分子间交换,随后通过快速预平衡步骤形成二铜中间体转化为产物。支持这一步骤的关键证据来自于对初始 1 损失速率与初始 [(Me(3)tacn)Cu(NCCH(3))]SbF(6)浓度的关系图的观察,表明存在饱和行为。此外,用 S═SbPh(3)处理 [(TMCHD)Cu(CH(3)CN)]PF(6)导致已知的三铜簇 (TMCHD)(3)Cu(3)(μ(3)-S)(2)(3)以良好的收率 (79%)生成,这是一种优于以前报道的合成方法 (Brown, E. C.; York, J. T.; Antholine, W. E.; Ruiz, E.; Alvarez, S.; Tolman, W. B. J. Am. Chem. Soc. 2005, 127, 13752-13753)。