Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
Neuroimage. 2011 Jun 1;56(3):1276-85. doi: 10.1016/j.neuroimage.2011.02.042. Epub 2011 Feb 19.
Recent developments in ultra high field MRI and receiver coil technology have opened up the possibility of laminar fMRI in humans. This could offer greater insight into human brain function by elucidating both the interaction between brain regions on the basis of laminar activation patterns associated with input and output, and the interactions between laminae in a specific region. We used very high isotropic spatial resolution (0.75 mm voxel size), multi-echo acquisition (gradient-echo) in a 7 T fMRI study of human primary visual cortex (V1) and novel data analysis techniques to quantitatively investigate the echo time dependence of laminar profiles, laminar activation, and physiological noise distributions over an extended region of cortex. We found T(2)* profiles to be explicable in terms of variations in myelin content. Laminar activation profiles vary with echo time (TE): at short TE the highest signal changes are measured at the pial surface; this maximum shifts into grey matter at longer TEs. The top layers peak latest as these have the longest transverse relaxation time. Theoretical simulations and experiment suggest that the intravascular contribution to functional signal changes is significant even at long TE. Based on a temporal noise analysis we argue that the (physiological) noise contributions will ameliorate differences in sensitivity between the layers in a statistical analysis, and correlates with laminar blood volume distribution. We also show that even at this high spatial resolution the physiological noise limit to sensitivity is reached within V1, implying that cortical sub-regions can be examined with this technique.
超高频磁共振成像和接收器线圈技术的最新进展为人类层状 fMRI 提供了可能性。这可以通过阐明基于与输入和输出相关的层状激活模式的脑区之间的相互作用,以及特定区域内的层之间的相互作用,为人类大脑功能提供更深入的了解。我们在 7T fMRI 研究人类初级视觉皮层 (V1) 中使用了非常高的各向同性空间分辨率 (0.75 毫米体素大小) 和多回波采集 (梯度回波),以及新颖的数据分析技术,定量研究了层状廓线、层状激活和生理噪声分布随时间的变化,这些廓线跨越了一个扩展的皮层区域。我们发现 T(2)*廓线可以用髓鞘含量的变化来解释。层状激活廓线随回波时间 (TE) 而变化:在短 TE 时,在脑皮层表面测量到最高的信号变化;随着 TE 的延长,这种最大值转移到灰质中。最上面的层峰最晚,因为它们具有最长的横向弛豫时间。理论模拟和实验表明,即使在长 TE 时,血管内对功能信号变化的贡献也是显著的。基于时间噪声分析,我们认为在统计分析中,(生理)噪声贡献将改善各层之间的敏感性差异,并与层状血流分布相关。我们还表明,即使在这种高空间分辨率下,生理噪声对敏感性的限制也在 V1 内达到,这意味着可以使用该技术检查皮质亚区。