Suppr超能文献

基于顺序替换的牙科 CT 金属伪影减少

Dental CT metal artefact reduction based on sequential substitution.

机构信息

Sirilawan Tohnak, 78-309 General Purpose South Building, School of ITEE, The University of Queensland, Brisbane QLD 4072, Australia.

出版信息

Dentomaxillofac Radiol. 2011 Mar;40(3):184-90. doi: 10.1259/dmfr/25260548.

Abstract

OBJECTIVE

Metal artefacts can seriously degrade the visual quality and interpretability of dental CT images. Existing image processing algorithms for metal artefact reduction (MAR) are either too computationally expensive to be used in clinical scanners or effective only in correcting mild artefacts. The aim of the present study was to investigate whether it is possible to improve the efficacy of the computationally efficient projection-correction approach to MAR by exploiting the spatial dependency or autocorrelation between adjacent CT slices.

METHODS

A new projection-correction algorithm [MAR by sequential substitution (MARSS)] was developed based on the idea that the corrupted portions of the projection data can be substituted with the corresponding portions from an unaffected adjacent slice. The performance of MARSS was evaluated relative to the projection-correction method of Watzke and Kalendar using a two-alternative forced choice (2AFC) visual trial involving 20 observers and 20 clinical CT data sets.16

RESULTS

The Cochran Q test revealed no significant difference in the responses across all observers. The data were then pooled and analysed using a one-tailed exact binomial test. This revealed that the proportion of responses in favour of MARSS was significant (P < 2.2 × 10(-16)). A second Cochran Q test revealed no significant difference in the responses across all images.

CONCLUSIONS

It is possible to improve the efficacy of projection correction by exploiting spatial autocorrelation. The 2AFC results suggest that the proposed MARSS algorithm outperforms competing computationally efficient algorithms in terms of reducing metal artefacts whilst at the same time preserving/revealing anatomic detail.

摘要

目的

金属伪影会严重降低牙科 CT 图像的视觉质量和可解释性。现有的用于减少金属伪影(MAR)的图像处理算法要么计算成本过高,无法在临床扫描仪中使用,要么只能有效纠正轻度伪影。本研究旨在探讨是否可以通过利用相邻 CT 切片之间的空间相关性或自相关性来提高计算效率高的投影校正方法对 MAR 的有效性。

方法

基于从无伪影相邻切片中替换投影数据的受污染部分的思想,开发了一种新的投影校正算法[MAR 通过顺序替换(MARSS)]。使用涉及 20 名观察者和 20 个临床 CT 数据集的二项式选择(2AFC)视觉试验,相对于 Watzke 和 Kalendar 的投影校正方法评估了 MARSS 的性能。

结果

Cochran Q 检验表明,所有观察者的反应均无显着差异。然后将数据汇总并使用单侧精确二项式检验进行分析。这表明,赞成 MARSS 的比例具有显着性(P <2.2×10(-16))。第二个 Cochran Q 检验表明,所有图像的反应均无显着差异。

结论

通过利用空间自相关性,可以提高投影校正的有效性。 2AFC 结果表明,与竞争的计算效率高的算法相比,所提出的 MARSS 算法在减少金属伪影的同时,在保留/揭示解剖细节方面表现更好。

相似文献

3
Deep learning-based metal artefact reduction in PET/CT imaging.基于深度学习的 PET/CT 成像中的金属伪影减少。
Eur Radiol. 2021 Aug;31(8):6384-6396. doi: 10.1007/s00330-021-07709-z. Epub 2021 Feb 10.
5
Frequency split metal artefact reduction in pelvic computed tomography.盆腔 CT 中频率分离金属伪影减少。
Eur Radiol. 2013 Aug;23(8):2137-45. doi: 10.1007/s00330-013-2809-y. Epub 2013 Mar 22.

引用本文的文献

本文引用的文献

1
Iterative deblurring for CT metal artifact reduction.CT 金属伪影降低的迭代去模糊。
IEEE Trans Med Imaging. 1996;15(5):657-64. doi: 10.1109/42.538943.
2
Synthesizing dental radiographs for human identification.合成牙科X光片用于身份识别。
J Dent Res. 2007 Nov;86(11):1057-62. doi: 10.1177/154405910708601107.
7
Artifacts in CT: recognition and avoidance.CT中的伪影:识别与避免
Radiographics. 2004 Nov-Dec;24(6):1679-91. doi: 10.1148/rg.246045065.
10
A simple computational method for reducing streak artifacts in CT images.
Comput Tomogr. 1980;4(1):67-71. doi: 10.1016/0363-8235(80)90043-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验