Suppr超能文献

CT 金属伪影降低的迭代去模糊。

Iterative deblurring for CT metal artifact reduction.

机构信息

Mallinckrodt Inst. of Radiol., Washington Univ., St. Louis, MO.

出版信息

IEEE Trans Med Imaging. 1996;15(5):657-64. doi: 10.1109/42.538943.

Abstract

Iterative deblurring methods using the expectation maximization (EM) formulation and the algebraic reconstruction technique (ART), respectively, are adapted for metal artifact reduction in medical computed tomography (CT). In experiments with synthetic noise-free and additive noisy projection data of dental phantoms, it is found that both simultaneous iterative algorithms produce superior image quality as compared to filtered backprojection after linearly fitting projection gaps. Furthermore, the EM-type algorithm converges faster than the ART-type algorithm in terms of either the I-divergence or Euclidean distance between ideal and reprojected data in the authors' simulation. Also, for a given iteration number, the EM-type deblurring method produces better image clarity but stronger noise than the ART-type reconstruction. The computational complexity of EM- and ART-based iterative deblurring is essentially the same, dominated by reprojection and backprojection. Relevant practical and theoretical issues are discussed.

摘要

迭代去模糊方法分别使用期望最大化(EM)公式和代数重建技术(ART),适用于医学计算机断层扫描(CT)中的金属伪影减少。在具有牙科体模的合成无噪声和加性噪声投影数据的实验中,发现与线性拟合投影间隙后的滤波反投影相比,两种同时迭代算法都能产生更好的图像质量。此外,在作者的模拟中,无论是在理想数据和重投影数据之间的 I 散度还是欧几里得距离方面,EM 类型的算法都比 ART 类型的算法收敛更快。同样,对于给定的迭代次数,EM 类型的去模糊方法比 ART 类型的重建产生更好的图像清晰度,但噪声更强。基于 EM 和 ART 的迭代去模糊的计算复杂性本质上是相同的,主要由重投影和反投影决定。讨论了相关的实际和理论问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验