Suppr超能文献

使用单类支持向量机进行异常值检测:在黑色素瘤预后中的应用

Outlier Detection with One-Class SVMs: An Application to Melanoma Prognosis.

作者信息

Dreiseitl Stephan, Osl Melanie, Scheibböck Christian, Binder Michael

机构信息

Dept. of Software Engineering, Upper Austria University of Applied Sciences, Hagenberg, Austria.

出版信息

AMIA Annu Symp Proc. 2010 Nov 13;2010:172-6.

Abstract

BACKGROUND

Medical diagnosis and prognosis using machine learning methods is usually represented as a supervised classification problem, where a model is built to distinguish "normal" from "abnormal" cases. If cases are available from only one class, this approach is not feasible.

OBJECTIVE

To evaluate the performance of classification via outlier detection by one-class support vector machines (SVMs) as a means of identifying abnormal cases in the domain of melanoma prognosis.

METHODS

Empirical evaluation of one-class SVMs on a data set for predicting the presence or absence of metastases in melanoma patients, and comparison with regular SVMs and artificial neural networks.

RESULTS

One-class SVMs achieve an area under the ROC curve (AUC) of 0.71; two-class algorithms achieve AUCs between 0.5 and 0.84, depending on the available number of cases from the minority class.

CONCLUSION

One-class SVMs offer a viable alternative to two-class classification algorithms if class distribution is heavily imbalanced.

摘要

背景

使用机器学习方法进行医学诊断和预后评估通常被表示为一个监督分类问题,即构建一个模型来区分“正常”和“异常”病例。如果仅能获取来自一个类别的病例,这种方法就不可行。

目的

评估通过单类支持向量机(SVM)进行异常检测的分类性能,以此作为识别黑色素瘤预后领域异常病例的一种手段。

方法

对用于预测黑色素瘤患者是否存在转移的数据集进行单类SVM的实证评估,并与常规SVM和人工神经网络进行比较。

结果

单类SVM的ROC曲线下面积(AUC)为0.71;二类算法的AUC在0.5至0.84之间波动,具体取决于少数类别的可用病例数量。

结论

如果类分布严重失衡,单类SVM为二类分类算法提供了一种可行的替代方案。

相似文献

4
SVMs modeling for highly imbalanced classification.用于高度不平衡分类的支持向量机建模
IEEE Trans Syst Man Cybern B Cybern. 2009 Feb;39(1):281-8. doi: 10.1109/TSMCB.2008.2002909. Epub 2008 Dec 9.
7
Feature space interpretation of SVMs with indefinite kernels.具有不定核的支持向量机的特征空间解释
IEEE Trans Pattern Anal Mach Intell. 2005 Apr;27(4):482-492. doi: 10.1109/TPAMI.2005.78.
10
Expert guided natural language processing using one-class classification.使用单类分类的专家指导自然语言处理。
J Am Med Inform Assoc. 2015 Sep;22(5):962-6. doi: 10.1093/jamia/ocv010. Epub 2015 Jun 10.

引用本文的文献

4
Towards addressing unauthorized sharing of subscriptions.致力于解决订阅的未经授权共享问题。
Appl Intell (Dordr). 2022;52(15):17090-17102. doi: 10.1007/s10489-021-02812-6. Epub 2021 Oct 16.

本文引用的文献

3
3D reconstruction of head MRI based on one class support vector machine with immune algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6016-9. doi: 10.1109/IEMBS.2007.4353719.
8
Estimating the support of a high-dimensional distribution.估计高维分布的支撑集。
Neural Comput. 2001 Jul;13(7):1443-71. doi: 10.1162/089976601750264965.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验