Suppr超能文献

快速重叠体积采集和重建(ROVAR):用于高分辨率、大视场光学显微镜的自动 3D 平铺。

Rapid overlapping-volume acquisition and reconstruction (ROVAR): automated 3D tiling for high-resolution, large field-of-view optical microscopy.

机构信息

NHLBI, Laboratory of Cardiac Energetics, Maryland, U.S.A.

出版信息

J Microsc. 2011 Jul;243(1):103-10. doi: 10.1111/j.1365-2818.2011.03490.x. Epub 2011 Feb 23.

Abstract

Micrometer-scale three-dimensional data from fluorescence microscopes offer unique insight into cellular morphology and function by resolving subcellular locations of fluorescent dyes and proteins. To increase field-of-view size while using a high-resolution multiphoton microscope, we have created an automated system of rapidly acquiring overlapping image stacks from multiple fields-of-view along a nonplanar tissue surface. Each image stack is acquired only between the surface and the maximal penetrating depth, as determined by the image signal-to-background ratio. This results in the acquisition of the volume containing visible tissue along the tissue surface, excluding the empty volume above the tissue and the volume beyond the maximum imaging depth within the tissue. The automated collection of overlapping volumes is followed by reconstruction that can efficiently generate a single three-dimensional volume of the tissue surface. This approach yields data spanning multiple millimetres at micrometre resolution that is faster while requiring less work from the microscope operator. The advantages of the system are demonstrated by acquisition of data from intact, unfixed organs without a coverglass both in vivo and in situ.

摘要

荧光显微镜的微米级三维数据通过解析荧光染料和蛋白质的亚细胞位置,为细胞形态和功能提供了独特的见解。为了在使用高分辨率多光子显微镜的同时增加视场大小,我们创建了一个自动系统,可以沿着非平面组织表面从多个视场快速获取重叠的图像堆栈。每个图像堆栈仅在表面和最大穿透深度之间获取,最大穿透深度由图像信号与背景比确定。这导致获取了沿着组织表面的可见组织的体积,排除了组织上方的空体积和组织内最大成像深度之外的体积。重叠体积的自动采集之后是重建,它可以有效地生成组织表面的单个三维体积。与传统方法相比,这种方法以更快的速度获取了具有微米分辨率的跨越多个毫米的数据,而且对显微镜操作人员的工作量要求更低。该系统的优点通过在体内和原位从无盖玻片的完整、未固定器官中获取数据得到了证明。

相似文献

3
A workflow for 3D-CLEM investigating liver tissue.用于研究肝组织的 3D-CLEM 工作流程。
J Microsc. 2021 Mar;281(3):231-242. doi: 10.1111/jmi.12967. Epub 2020 Oct 27.
10
Q&A: Array tomography.常见问题解答:面绘制技术
BMC Biol. 2018 Sep 6;16(1):98. doi: 10.1186/s12915-018-0560-1.

引用本文的文献

1
Real-time video mosaicking to guide handheld in vivo microscopy.实时视频拼接以指导手持式体内显微镜检查。
J Biophotonics. 2020 Jun;13(6):e202000048. doi: 10.1002/jbio.202000048. Epub 2020 Apr 14.

本文引用的文献

5
Globally optimal stitching of tiled 3D microscopic image acquisitions.平铺式3D显微图像采集的全局最优拼接
Bioinformatics. 2009 Jun 1;25(11):1463-5. doi: 10.1093/bioinformatics/btp184. Epub 2009 Apr 3.
10
Multi-photon excitation microscopy in intact animals.完整动物体内的多光子激发显微镜检查
J Microsc. 2006 Apr;222(Pt 1):58-64. doi: 10.1111/j.1365-2818.2006.01570.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验