Suppr超能文献

利用深度学习对 2D 投影图像进行修复,实现 3D 样本的高通量宽场荧光成像。

High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.

机构信息

Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden.

Sartorius Corporate Research, Sartorius Stedim Data Analytics AB, Umeå, Sweden.

出版信息

PLoS One. 2022 May 19;17(5):e0264241. doi: 10.1371/journal.pone.0264241. eCollection 2022.

Abstract

Fluorescence microscopy is a core method for visualizing and quantifying the spatial and temporal dynamics of complex biological processes. While many fluorescent microscopy techniques exist, due to its cost-effectiveness and accessibility, widefield fluorescent imaging remains one of the most widely used. To accomplish imaging of 3D samples, conventional widefield fluorescence imaging entails acquiring a sequence of 2D images spaced along the z-dimension, typically called a z-stack. Oftentimes, the first step in an analysis pipeline is to project that 3D volume into a single 2D image because 3D image data can be cumbersome to manage and challenging to analyze and interpret. Furthermore, z-stack acquisition is often time-consuming, which consequently may induce photodamage to the biological sample; these are major barriers for workflows that require high-throughput, such as drug screening. As an alternative to z-stacks, axial sweep acquisition schemes have been proposed to circumvent these drawbacks and offer potential of 100-fold faster image acquisition for 3D-samples compared to z-stack acquisition. Unfortunately, these acquisition techniques generate low-quality 2D z-projected images that require restoration with unwieldy, computationally heavy algorithms before the images can be interrogated. We propose a novel workflow to combine axial z-sweep acquisition with deep learning-based image restoration, ultimately enabling high-throughput and high-quality imaging of complex 3D-samples using 2D projection images. To demonstrate the capabilities of our proposed workflow, we apply it to live-cell imaging of large 3D tumor spheroid cultures and find we can produce high-fidelity images appropriate for quantitative analysis. Therefore, we conclude that combining axial z-sweep image acquisition with deep learning-based image restoration enables high-throughput and high-quality fluorescence imaging of complex 3D biological samples.

摘要

荧光显微镜是可视化和量化复杂生物过程时空动态的核心方法。虽然存在许多荧光显微镜技术,但由于其成本效益和可及性,宽场荧光成像仍然是最广泛使用的技术之一。为了对 3D 样品进行成像,传统的宽场荧光成像需要沿着 z 方向获取一系列间隔的 2D 图像,通常称为 z 堆叠。在分析流水线的第一步中,通常将该 3D 体积投影到单个 2D 图像中,因为 3D 图像数据难以管理,并且分析和解释具有挑战性。此外,z 堆叠采集通常很耗时,这可能会导致生物样本光损伤;这些是需要高通量的工作流程的主要障碍,例如药物筛选。作为 z 堆叠的替代方案,已经提出了轴向扫描采集方案来规避这些缺点,并提供了与 z 堆叠采集相比,对 3D 样品进行 100 倍更快图像采集的潜力。不幸的是,这些采集技术生成的低质量 2D z 投影图像需要使用复杂的、计算量大的算法进行恢复,然后才能对图像进行分析。我们提出了一种新的工作流程,将轴向 z 扫描采集与基于深度学习的图像恢复相结合,最终实现使用 2D 投影图像对复杂 3D 样品进行高通量和高质量成像。为了展示我们提出的工作流程的能力,我们将其应用于大 3D 肿瘤球体培养物的活细胞成像,并发现我们可以生成适用于定量分析的高保真图像。因此,我们得出结论,将轴向 z 扫描图像采集与基于深度学习的图像恢复相结合,可以实现复杂 3D 生物样品的高通量和高质量荧光成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3978/9119453/1a636421f177/pone.0264241.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验